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Abstract. In this paper we investigate trading with optimal mean reverting portfolios subject to cardinality constraints. First, we
identify the parameters of the underlying VAR(1) model of asset prices and then the quantities of the corresponding Ornstein-
Uhlenbeck (OU) process are estimated by pattern matching techniques. Portfolio optimization is performed according to two
approaches: (i) maximizing the predictability by solving the generalized eigenvalue problem or (ii) maximizing the mean return.
The optimization itself is carried out by stochastic search algorithms and Feed Forward Neural Networks (FFNNs). The presented
solutions satisfy the cardinality constraint thus providing sparse portfolios to minimize the transaction costs and to maximize
interpretability of the results. The performance has been tested on historical data (SWAP rates, SP 500, and FOREX). The
proposed trading algorithms have achieved 29.57% yearly return on average, on the examined data sets. The algorithms prove
to be suitable for high frequency, intraday trading as they can handle financial data up to the arrival rate of every second.

Keywords: mean reversion, convergence trading, parameter estimation, VAR(1) model, financial time series.

1. Introduction

Portfolio optimization was first investigated by
Markowitz (1952) in the context of diversification to
minimize the associated risk and maximize predict-
ability. Mean reversion is a good indicator of predict-
ability, as a result, identifying mean reverting portfolios
has become a key research area (d’Aspremont, 2011;
Fogarasi & Levendovszky, 2011). Assuming that the
asset price vector follows a VAR(1) process, portfolio
optimization can be reduced to solving a generalized
eigenvalue problem (Box & Tiao, 1977). d’Aspremont
(2011) analyzed the problem of finding mean-reverting
portfolios with cardinality constraints, resulting in
sparse portfolios to minimize the transaction costs.
With this constraint, the optimal portfolio selection
becomes NP hard (Natarjan, 1995), but he proposed
a heuristic algorithm providing the optimal portfolio
in polynomial time. In this paper, we further advance
the optimal portfolio selection by using FFNNs.
Furthermore, as an alternative objective function we
introduce the maximum average return and optimize it
by using the underlying marginal probability density

functions (PDFs) of the OU processes. In order to
estimate the parameters of OU processes we use pattern
matching methods.

Trading is then perceived as a walk in the
“buy/sell” action space. The methods have been tested
numerically on SWAP, SP500 and FOREX rates, and
the results exhibit profits.

The structure of the paper is as follows.

• in section 2, the model and the notations are
introduced;

• in section 3, we optimize the portfolio by two
approaches: (i) maximizing the predictability by
solving the generalized eigenvalue problem; and
(ii) maximizing the average return;

• in section 4, the model identification is treated;
• in section 5, portfolio optimization is carried out

with cardinality constraints by using stochastic
search algorithms and FFNNs;

• in section 6, the trading algorithm is described;
• in section 7, a detailed performance analysis is

given based on historical data;
• in section 8, some conclusions are drawn.

2158-5571/13/$27.50 c© 2013 – IOS Press and the authors. All rights reserved
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2. Theoretical foundations

In this section we describe the model and the
concept of mean reverting portfolios. Our approach
follows the one published in (d’Aspremont, 2011),
however, in section 3.2 we develop novel heuristic
approaches for portfolio optimization.

2.1. The model

The time series describing the prices of assets
is denoted by sTt = (s1,t, . . . , sn,t) where si,t is the
price of asset i at time instant t. The portfolio
vector is denoted by xT = (x1, . . . , xn) where xi
gives the number of possessed quantity from asset
i. The value of the portfolio at time t is denoted

by p(t) and defined as p(t) = xT st =
n∑
i=1

xisi,t. Our

objective is to find the optimal portfolio xopt which
maximizes a pre-defined objective function subject
to cardinality constraint which specifies that the
number of non-zero components in xopt must not
exceed a given number l. The optimal portfolio
is sought according to different objective functions,
such as maximizing the predictability or the average
return. These objective functions are developed under
the assumption that the portfolio value p(t) exhibits
mean reverting properties and follows an Ornstein-
Uhlenbeck (OU) process (Ornstein & Uhlenbeck,
1930). This is a frequent assumption in trading (Fama &
French, 1988; Manzan, 2007; Ornstein & Uhlenbeck,
1930; Poterba & Summers, 1988) which follows from
the VAR(1) nature of the underlying asset process.

2.2. Portfolios as OU processes and the related
VAR(1) model

The OU process is characterized by the following
stochastic differential equation

dp(t) = ϑ(µ− p(t))dt+ σdW (t), (1)

where W(t) is a Wiener process and ϑ > 0 (mean
reversion coefficient), µ (long-term mean) and σ >
0 (volatility) are constants. By using the Itō-Doeblin
formula (Ito, 1944), one can obtain the following
solution:

p(t) = p(0)e−ϑt + µ
(
1− e−ϑt

)
+

t∫
0

σe−ϑ(t−s)dW (s) (2)

which implies that

E[p(t)] = µ(t) = p(0)e−ϑt + µ(1− e−ϑt) (3)

and asymptotically

lim
t→∞

p(t) ∼ N

(
µ,

√
σ2

2ϑ

)
(4)

Parameter ϑ determines the convergence speed of
the process towards the mean, and inversely indicating
the level of uncertainty (via the standard deviation
of the asymptotic Gaussian distribution (4)). Hence,
for convergence trading, larger ϑ implies a better
portfolio, as it quickly returns to the mean with a
minimum amount of uncertainty.

Since, in real trading environments, the time is
treated as a discrete quantity, in the following discus-
sion we view the asset prices as a first order, vector
autoregressive VAR(1) process, which is considered
to be the discrete representative of the continuous
OU process (d’Aspremont, 2011). Assume that sTt =
(s1,t, . . . , sn,t) is subject to a first order vector auto-
regressive process, VAR(1), defined as follows:

st = Ast−1 + Wt, (5)

where A is a matrix of type n×n and Wt ∼ N(0, σI)
are i.i.d.r.v.-s for some σ > 0. In practice, assets are
traded in discrete units, thus xi ∈ {0, 1, 2, . . .} but for
the purposes of our analysis we allow xi to be any
real number, including negative ones which denote the
ability to short sell assets. Multiplying both sides with
vector x (in the inner product sense), we obtain the
portfolio value as follows:

pt = xT st = xTAst−1 + xTWt (6)

The variance of the portfolio is

σ2(t) = E(p2
t ) = E

(
xT stsTt x

)
= xTGx, (7)

due to independence σ2 (t) =σ2 (t− 1) +σ2
noise,

where

σ2 (t− 1) = E
(

xTAstsTt AT x
)

= xTAGAT x,

(8)

and

σ2
noise = xTE

(
WtWT

t

)
x = xTKx. (9)



I.R. Sipos and J. Levendovszky / Optimizing sparse mean reverting portfolios 129

G is the covariance matrix of the VAR(1) process
and K is the covariance matrix of the noise. Defining
the predictability of any selected mean-reverting x
portfolio can be formulated as (Box & Tiao, 1977):

λ =
σ2 (t− 1)
σ2 (t)

=
σ2 (t− 1)

σ2 (t− 1) + σ2
noise

. (10)

It is clear that if λ is high then the contribution of
the noise is small, as a result the portfolio is more
predictable.

3. Portfolio optimization

In this section we discuss the optimal portfolio
selection subject to two different objective functions:

1. Optimizing the portfolio subject to the traditional
λ maximization (d’Aspremont, 2011);

2. Optimizing the portfolio subject to maximizing
the average return as a novel approach.

3.1. Mean reverting portfolio as a generalized
eigenvalue problem

As mentioned before, λ is a key parameter for
trading. The traditional way to identify the optimal
sparse mean-reverting portfolio is to find a portfolio
vector subject to maximizing its predictability. One
may note that

xopt = arg max
x

λ = arg max
x

σ2 (t− 1)
σ2 (t)

= arg max
x

xTAGAT x
xTGx

(11)

is equivalent to finding the eigenvector corresponding
to the maximum eigenvalue in the following general-
ized eigenvalue problem (d’Aspremont, 2011):

AGAT x = λGx (12)

which can then be solved as

det(AGAT − λG) = 0 (13)

under the cardinality constraint. As a result, portfolio
optimization is then cast as the following constrainted
optimization problem:

xopt : max
x

xTAGAT x
xTGx

, card(x) ≤ l (14)

Note that this can be transformed into a traditional
eigenvalue problem by introducing the variable u :=
G1/2x so that we have(

G+
)1/2 AGAT

(
G+
)1/2 u = λu, (15)

where G+ denotes the Moore-Penrose pseudoinverse
of matrix G, and the cardinality constraint is now
placed upon

(
G+
)1/2 u.

3.2. Maximizing the average return

In this section a new objective function is developed
which may have a more direct impact on the trading
profit, namely maximizing the average return. This
approach yields another optimization function which,
however, does not have known analytical solutions.
This objective function can be related to any portfolio
selection. However, in the paper we identify mean-
reverting processes but now instead of optimizing their
predictability, we optimize the average return. In this
specific case, starting from the observed initial value
of p(0), based on (3), the objective function can be
expressed as follows:

Ψ (x) = max
0≤t

E(p(t))− p(0) = max
0≤t

(µ(t)− p0)

= max
0≤t

((µ0 − µ)e−ϑt + µ− xT s0). (16)

Section 4.2 describes methods for estimating ϑ, σ,
µ and µ0, respectively. Another objective function
can be obtained if we take into account that a risk
free interest is available with interest rate rf , which
allows discounting the expected future portfolio value
over time. We obtain the following optimization by
replacing the future value with its net present value:

Ψ (x) = max
0≤t

E (p(t))
(1 + rf )t

− p0= max
0≤t

(
µ(t)

(1 + rf )t
−p0

)

= max
0≤t

(
(µ0 − µ) e−ϑt + µ

(1 + rf )t
−xT s0

)
, (17)

where equating the partial derivative to zero with
respect to time yields the optimal solution, which is
given as (the proof is given in the appendix):

t =
1
ϑ

ln
(

(µ− µ0) (ϑ+ ln (1 + rf ))
µ ln (1 + rf )

)
. (18)
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In this way, portfolio optimization can again be
reduced to a constrainted optimization problem:

xopt = arg max
x

Ψ(x, topt), card (x) ≤ l. (19)

where function Ψ(x) can be either (16) or (17).

4. The computational approach

In this section we describe how to implement the
mathematical model described in section 3 to trading on
real time series. The proposed computational approach
is depicted by the block diagram shown on Fig. 1.

As a first step, the VAR(1) model parameters (matri-
ces A, G, K) have to be identified based on the available
observations, as will be described in section 4.1. In the
next block, different portfolio optimization methods
(detailed in section 4.2) will produce an optimal sparse
portfolio vector: xTopt = {x1, . . . , xN} under the con-
straint card(x)≤ l. Based on the identified portfolio,
the selected trading strategy (section 6) should decide
on which trading action is to be launched. For the sake
of comparison of the profitability of different methods
we made performance analysis the results of which are
described in section 7.

4.1. VAR(1) model parameter identification

As explained in the preceding sections, with the
knowledge of the parameters A, G and K, we can apply
various heuristics to approximate the l-dimensional,
optimal, sparse mean-reverting portfolio (Fogarasi &
Levendovszky, 2011). However, these matrices must
be estimated from the historical observations of the
random process st.

We recall from our earlier discussion that we assume
st follows a stationary, first order autoregressive
process. In most cases the linear system of equations
is over-determined, hence A is estimated using least
squares estimation techniques, as

Â : min
A

T∑
t=2

‖st − Ast−1‖2 (20)

where ‖ · ‖2 denotes the Euclidian norm.

This gives a VAR(1) fit for our time series for cases
where we have a large portfolio of potential assets
(e.g. considering all 500 stocks which make up the
S&P 500 index), from which a sparse mean-reverting
subportfolio is to be chosen.

Solving the minimization problem above, by equat-
ing the partial derivatives to zero with respect to each
element of the matrix A, we obtain the following
system of linear equations:

n∑
k=1

Âi,k
T∑
t=2

st−1,kst−1,j

=
T∑
t=2

st,ist−1,j∀i, j = 1, . . . , n. (21)

Solving (21) for Â and switching back to vector
notation for s, we obtain

Â =
T∑
t=2

(
sTt−1st−1

)+ (sTt−1st
)
, (22)

where M+ denotes the Moore-Penrose pseudoinverse
of matrix M. Note that the Moore-Penrose pseudoin-
verse is preferred to regular matrix inversion, in order
to avoid problems which may arise because of the
potential singularity of sTt−1st−1.

The covariance matrix K of random variable Wt can
be estimated based on the assumption that the noise
terms in equation are i.i.d.r.v.-s with Wt ∼ N(0, σW I)
for some σW > 0, where I denotes the identity matrix.
Then we obtain the following estimate for σW using:

σ̂W =

√√√√ 1
n(T − 1)

T∑
t=2

∥∥∥st − Âst−1

∥∥∥2

. (23)

In the more general case, when the terms of Wt are
correlated, we can estimate the covariance matrix K,
of the noise as follows:

K̂ =
1

(T − 1)

T∑
t=2

(
st − Âst−1

)T (
st − Âst−1

)
.

(24)

Fig. 1. Computational model.
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This noise covariance estimate will be used below
in the estimation of the covariance matrix.

We estimate G with the sample covariance matrix
obtained as:

Ĝ1 :=
1

T − 1

T∑
t=1

(st − s̄)T (st − s̄), (25)

where s is the sample mean vector of the assets defined
as

s :=
1
T

T∑
t=1

st. (26)

4.2. OU parameter estimation

The objective of this section is to estimate parameter
µ and ϑ. Estimating the long term mean (µ) of the
process of portfolio valuations (6) is instrumental for
mean reverting trading. Having an OU process at hand,
this estimation can be performed in multiple ways
(Fogarasi & Levendovszky, 2012a). Besides the long
term mean the mean at the initial starting point of the
process (µ0) is also a subject of interest from the point
of trading. Besides the estimation of µ and µ0, the least
squares regression can estimate ϑ and σ parameters for
any selected portfolio.

Sample mean estimation
As a benchmark for other methods, the long term

mean can be estimated by simply taking the empirical
average of the observed data (27), while the first value
can be assigned to the µ0 parameter (28).

µ̂ :=
1
T

T∑
t=1

xT st (27)

µ̂0 := p0 (28)

Least squares regression (van Gelder, 2009)
Rewriting the Ornstein-Uhlenbeck equation stoc-

hastic differential equation (1) to the following way

st − st−1 = ϑ(µ− st−1)∆t+ σ(Wt −Wt−1)

= ϑµ∆t− ϑst−1∆t+ σ(Wt −Wt−1)
(29)

results in a linear regression in the form of

y = a+ bx+ εt (30)

from which the estimation of the OU process
parameters can be formulated as

ϑ̂ = − ln(b)
∆t

, σ̂ = sd(εt)

√
2ϑ̂

1− b2
and µ̂ :=

a

1− b
,

(31)

where sd(εt) denotes the standard deviation of εt over
t. Note that in the lack of the mean-reverting property,
when ϑ̂ is close to zero, the estimation of µ̂ could suffer
from numerical instability.

Recursive solution
As the selected linear combination of VAR(1) pro-

cesses is also VAR(1), then we can use the following
recursive function:

p0 = xT s0 (32)

ŝt+1 = Ast (33)

pt+1 = xTAŝt (34)

This recursion should be performed until the
difference between two steps is smaller then a given
threshold, when the process is sufficiently close to the
mean.

µ̂ := pt+k, |pt+k − pt+k−1| < ε (35)

If the recursion is divergent that means that the
process has not got the mean reversion property.

Minimizing the mean-square error
Among all possible Ornstein-Uhlenbeck processes

described by equation

µ(µ0, µ, ϑ, t) = (µ0 − µ)e−ϑt + µ

M :
{

µ (µ0, µ, ϑ, t) , ϑ = ϑ̂, t = 1, . . . , T
} (36)

we would like to select the one with least squared error
against the observed portfolio valuation vector:

µ̂ = min
µ∈M
‖p− µ‖2 (37)

Solving the ∂
∂µ‖p − µ‖2 = 0 equation to find the

optimal mean gives the following estimation:

µ̂ =

T∑
t=1

(
pt − µ0e

−ϑt)
T∑
t=1

(1− e−ϑt)
. (38)
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Fig. 2. Comparison of different mean estimation techniques.

Pattern matching (Fogarasi & Levendovszky, 2012a)
Similarly to the previous method, pattern matching

aims to find the maximum-likelihood estimation for
the observed portfolio valuations among all possible
processes (36). Taking into account that the samples
follow Gaussian distribution, this leads to the opti-
mization problem

max
µ∈M

1√
2πdet(U)

e−
1
2 (pt−µt)

TU−1(pt−µt) (39)

being equivalent with

min
µ∈M

µtU
−1µt − 2µtU

−1pt, (40)

where U denotes the covariance matrix of pt: Ui,j =
σ2

2ϑ

(
e−ϑ|i−j| − e−ϑ(i+j)

)
As the optimization problem is quadratic, it can be

solved analytically

∂

∂µ
µtU

−1µt − 2µtU
−1pt = 0 (41)

resulting in the following closed form solution:

µ̂ =

(
pT − µ0vT2

)
U−1v1

vT1 U−1v1

(42)

where v1 =
{

(1− e−ϑt), t = 1, . . . , T
}

and v2 ={
e−ϑt, t = 1, . . . , T

}
respectively.

For the sake of finding the best estimation
procedure, the different methods were tested on
artificially generated data. Each observation was
with the following parameters σ= 1.5, T = 8 and
µ, µ0 ∈ [0; 100], respectively. The comparison was
done independently for mean reversion coefficients in
ϑ ∈ [0.5; 1], and in each case the mean squared error
was taken into account for 100 generated processes.
The results are shown by Fig. 2.

5. Optimization and dealing with the cardinality
constraint

Having identified the model parameters, we can now
focus on the optimization. In the absence of proper
analytical solutions for the constrained optimization
problems posed in section 3.2, we use simulated
annealing and FFNNs for obtaining good quality
heuristic solutions.

5.1. Portfolio optimization by simulated annealing

Simulated annealing (Kirkpatrick et al., 1983) is
a stochastic search method for finding the global
optimum in a large search space. In this context
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the energy function J(x) is either the first objective
function maximizing the eigenvalue (11) (Fogarasi
& Levendovszky, 2012b) or the second objective
function maximizing the average return (12) for the
selected portfolio:

a) J (x) = xTAGAT x
xTGx ;

b) J (x) = max
0≤t

(
(µ0−µ)e−ϑt+µ

(1+r)t
− xT s0

)
.

With an appropriate neighbor function the cardi-
nality constraint card (x) ≤ l is automatically fulfilled
at each step of the algorithm. The neighbor function
on each iteration makes two steps: first, changes
the non-zero values by ±1, and in the second
step inserts the changed elements into a randomly
chosen l dimensional subspace. Let x be an arbitrary
initialization vector, and then by calling a random
number generation a vector x′ is generated subject to
uniform distribution over the subspace in which the
optimal portfolio vector is sought. Accept the new

vector if J (x′) > J (x), or otherwise with e−
J(x)−J(x′)

T

probability. Continue the sampling while decreasing
the T until zero. The last state vector is now the
identified optimal sparse portfolio vector.

Algorithm
Set x(0) = 0 (or use any other arbitrary ini-

tialization). Assume we are at Step l.

1. By calling the RNG function generate a vector x′

subject to uniform distribution over bounded the
state space in which the optimal portfolio vector
is sought.

2. Generate a binary random number subject to the
following distribution:

P (ξ = 1)

=

{
1 if J(x′) > J(x(l))

e−
J(x(l))−J(x′)

T (l) if J(x′) < J(x(l))

3. Accept x′ if ξ = 1.
4. Generate k times a number subject to uniform

distribution 1/n in the interval (1, . . . , n)(if two
or more generated numbers coincide then refuse
them and carry on with the generation until
all of them are different). Let us denote the
output of this generation with (i1, . . . , ik) ; ij ∈
{1, . . . , n}.

5. Set the corresponding components of vector x′ to
be zero, i.e. x′ij := 0, j = 1, . . . , k to satisfy the
cardinality constraint and accept x(l + 1) = x′.

6. Decrease T (l) according to T (l) = A
log(l) (or by

using T (l + 1) = α∗T (l)).
7. Otherwise go back to Step 1.

5.2. Portfolio optimization by FFNNs

We can use a universal approximator, like FFNN
to estimate the optimal portfolio vector from the
identified matrices. FFNNs are described by the
following mapping

y = Net (z, w)

= ϕ

(∑
j

w
(L)
j ϕ

(∑
l

w
(L−1)
jl · · · ϕ

(
w(1)

nmzm

)))
(43)

where z is the input vector and w vector denotes the
free parameters. They have universal representation
capabilities (Cybenko, 1989) in L2 in terms of

∀ε > 0, f(z) ∈ L2 → ∃w : ‖f(z)−Net(z,w)‖ < ε

(44)

Furthermore they can learn and generalize from a fi-
nite set of examples τ (K) = {(zk,dk), k = 1, . . . ,K}
by using the Back Propagation algorithm (Hagan
& Menhaj, 1994). As a result, one may look
upon the optimal portfolio selection problem as a
mapping from the identified, A, G, K matrices of
the underlying VAR(1) process to the optimal sparse
portfolio vector x. In this case, the input vector
of FFNN is z = (A, G, K) constructed by matrix
flattening and the output is vector x with card (x) ≤ l
to fulfill the sparsity constraint. One can construct
a training set τ (K) = {(zk,dk), k= 1, . . . ,K}, by
finding the optimal sparse portfolio vectors for some
input matrices by exhaustive search. Unfortunately
as the input layer has a size of 3N2, this solution
can be used only for lower dimensional spaces. The
construction of the training set is done according to the
computational model shown on Fig. 3.

Once the training set has been constructed, the
BP algorithm (Hagan & Menhaj, 1994) can be used
to optimize the weights (the free parameters) of the
corresponding FFNN by minimizing the following
objective function:

wopt : min
w

1
K

K∑
k=1

‖zk −Net (zk,w)‖2 (45)
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Fig. 3. Construction of the training set for FFNNs.

These FFNNs can be combined with the SA method
described in section 5.1 to generate a starting vector for
the search, in order to increase the convergence speed.

6. The proposed trading algorithms

In this section we describe the trading algorithms
which are used to trade with the optimized portfolio.
In the proposed algorithms, trading is described as
a walk in a binary state space in which either we
already have a portfolio at hand or cash at hand, while
the transitions are only affected by the state of the
portfolio valuation described in (6) or the evaluations
of the potentially owned and the newly identified
portfolios by the using a given objective function (see
section 3). We introduce two alternatives of the trading
strategy which differs in whether is it allowed to sell
an owned portfolio before it reached its expected mean
and invest to a new portfolio with higher expectations
instead. Each trading strategy is formalized by a state
chart (Fig. 4 and Fig. 5).

6.1. Trading by the λ of OU process

After the optimal portfolio selection based on
maximizing the predictability parameter λ, the trading
algorithm is responsible for interpreting the selected
portfolios as a sequence of trading actions. In the first
place it has to be decided whether the portfolio is
below or above its long term mean, or in its stationary
state. This can be perceived as a decision theoretic
problem. In stationary state the portfolio has a normal
distribution,

pt ∼ N
(
µ,

σ√
2ϑ

)
(46)

then we can formulate hypothesises based on the
probability of the observed portfolio value is in the
stationary state as follows (Fogarasi & Levendovszky,
2012a):

• Hypothesis 1, the portfolio is under the mean
(p(t) < µ − α → p(t) < µ) with the

probability of

µ−α∫
−∞

1√
2πσ
/√

2ϑ
e
− (u−µ)2

σ2/ϑ du = ε/2. (47)

• Hypothesis 2, the portfolio is above the mean
(p(t)>µ + α → p(t) > µ) with the probability
of

∞∫
µ+α

1√
2πσ
/√

2ϑ
e
− (u−µ)2

σ2/ϑ du = ε/2. (48)

• Hypothesis 3, the portfolio is in stationary state
(p(t) ∈ [µ− α;µ+ α] → p(t) = µ) with the
probability of

µ+α∫
µ−α

1√
2πσ
/√

2ϑ
e
− (u−µ)2

σ2/ϑ du = ε. (49)

By adjusting the parameter ε one can set the
probability of making the wrong choice if the portfolio
has already reached its stationary state. Adjusting this
parameter affects how cautious the trading will be.

In this case the agent buys the portfolio only if the
identified portfolio has not reached is stationary state.
Note that if the portfolio is above its estimated long
term mean, then the agent buys the inverse portfolio
instead in which every long and short position is
switched to its opposite. And after having a portfolio
at hand the agent holds it until it reaches its stationary
state (estimating the long term mean and making
the decision is recalculated in every time instance
according to the sliding window used) then sells it.

6.2. Trading by maximizing the average return

In the second case, the portfolio is evaluated by
calculating the corresponding objective function.
Positive evaluation indicates a profitable portfolio,
while negative evaluation indicates that the portfolio
may produce a loss. Higher value in each objective
function implies a better portfolio.
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Fig. 4. State chart of “nochange” trading strategy.

Fig. 5. State chart of “change” trading strategy.

Based on this, the agent buys a portfolio only if it has
a positive evaluation. A new trading action is taken if a
newly identified portfolio has higher and also positive
evaluation than the present one. In this case one can
sell the owned portfolio and buy the new one regardless
of whether the original portfolio reached its mean or
not. This approach treats the present portfolio as a sunk
cost, thus only the future expectations are taken into
consideration. Hence, we do not have to give up the best
available portfolio in favor of a presently unfavorable
portfolio. In the case that neither the owned nor the
currently identified portfolio has positive evaluation
then the agent closes the positions (Fig. 5).

7. Simulation results and performance analysis

An extensive back-testing framework was created to
handle trading actions on various input data sets and
provide numerical results for comparison of different
methods on different financial data series.

7.1. Data sets

For performance analysis we used the following
data sets:

• Daily close prices of 500 stocks from the S&P
500 (between July 2010 and July 2011) (Yahoo,
2011);
• U.S. SWAP rates (from the year of 1998)

(Morgan Stanley Marketone, 2010);

• FOREX rates (EUR/USD, GBP/USD, AUD/
USD, NZD/USD, USD/CHF, USD/CAD between
October 2005 and September 2006 in daily reso-
lution).

In the implementation, we used sliding windows
for the model parameter estimation, where an optimal
portfolio was identified after each step as an input for
the trading strategy described in section 6.

For real data, a pre-processing step is required in
order to ensure E(st) = 0 for fitting the VAR(1)
model:

st = zt − z, t = 1, . . . , T, (50)

where z̄ := 1
T

T∑
t=1

zt (z denotes the original time

series). This normalization have done in each time
window independently, therefore this approach is
applicable for forward tests as well.

7.2. Performance measures

For the sake of comparison the following perfor-
mance measures were calculated for each simulation,
where ct denotes the sum of owned cash and the
market value of the owned portfolio at time instance t,
while c0 denotes the initial cash (in each case the agent
started with $10,000).

• Minimal value Gmin =
min

0≤t≤T
ct

c0
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Fig. 6. Trading results on U.S. SWAP data.

• Final value Gfinal = cT
c0

• Maximal value Gmax =
max

0≤t≤T
ct

c0

• Average value Gavg =
1
T

T∑
t=1

ct

c0
• Trading count N

• Sharpe-ratio S =
1
T

T∑
t=1

(
ct
ct−1

−1
)
−rf√

var
({

ct
ct−1

,t=1,...,T
}) ,

where rf denotes the available daily risk free interest

rate and var
({

ct
ct−1

, t = 1, . . . , T
})

denotes the vari-
ance of the daily returns (for the numerical results we
used yearly 1% as risk free return).

7.3. Trading results

In this section we show the numerical results
obtained on S&P500, SWAP and FOREX mid-prices.
The performance of different portfolio identification
methods are compared. The effect of deploying a
FFNN (section 5.2) is also measured (due to the
limitations of FFNNs regarding higher dimensional
spaces in this case only the SWAP data was
analyzed). Regarding the sparsity constraint, 3 assets
were selected in each transaction.

In case of the SWAP and S&P 500 data 8 days
were used as an identification time window, while
14 days for FOREX. The usage of relatively short
windows let us quickly react to new market situations.
Buying portfolios much earlier than they converged

close to their long term mean compensates the rough
estimation of model parameters. The long term mean
was estimated by linear regression (section 4.2) in each
simulation.

In this period, the U.S. SWAP rates had a decreasing
tendency, at the end of the year they are worth only
87.89% of their initial prices on average. The bar chart
(Fig. 6) shows that all of the introduced methods beat
this tendency, and in the scenario when a FFNN was
deployed the trading was profitable with a 13.49%
yearly profit (with 0.065 daily Sharpe-ratio).

While the S&P 500 asset prices in the studied period
rose only with 12.03%, maximizing the λ results in
33.40% and maximizing the average profit with the
first trading strategy results in 53.55% profit (with
0.100 daily Sharpe-ratio). On the other hand, changing
the portfolios before they could reach the long term
mean proved to be a bad strategy (Fig. 7).

The FOREX rates in this period showed (Fig. 8)
only a slight increase during the year (1.52%), our
methods achieved up to 21.66% profit (with 0.177
daily Sharpe-ratio).

As one can see, the novel portfolio optimization
methods outperform the traditional eigenvalue max-
imization in most scenarios, and also deploying a
FFNN increases the performance.

Fig. 9 shows the profit reached in FOREX data
using different mean estimation methods. The novel
objective function with the corresponding trading
strategy described in 6.2 were used. It is shown that
using the linear regression results in the best profit.
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Fig. 7. Trading results on S&P 500 data.

Fig. 8. Trading results on FOREX data.

7.4. Response time analysis

Besides the profit achieved by the introduced
methods, the computational time is also an important
aspect of usability in real environments. As described
in Fig. 1, each trading iteration consists of a
parameter identification step, portfolio optimization
and making a trading decision. The average, minimal
and maximal response times are given for each data
set. The measurements were made on a desktop
computer with an Intel Core 2 Quad Q9550@2.83GHz
CPU on a single thread without any optimization

(e.g. caching). Table 1 contains the response times
with maximizing the predictability (section 3.1). In
this case, the response time is roughly constant and
depends mostly on the number of assets.

The computational time for maximizing the average
return (section 3.2) is summarized in Table 2. This
method is considerably slower because of the stochastic
portfolio optimization, but for large number of assets,
the running time is comparable to the generalized
eigenvalue problem. Note that the maximum response
time can be scaled in an arbitrary way by setting the
number of steps in the simulated annealing algorithm,
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Fig. 9. Comparison of trading results using different mean estimation techniques on FOREX data.

Table 1
Response times (with maximizing the predictability)

Minimum Maximum Average

SWAP 1 ms 297 ms 9 ms

S&P 500 2138 ms 3176 ms 2406 ms

FOREX 1 ms 19 ms 8 ms

Table 2
Response times (with maximizing the average return)

Minimum Maximum Average

SWAP 551 ms 16752 ms 1574 ms

S&P 500 2220 ms 2785 ms 2496 ms

FOREX 650 ms 15641 ms 1727 ms

and massively parallel architectures can be used as well
to decrease the running time.

8. Conclusions and future work

In this paper we have proposed novel algorithms
for optimal trading on mean reverting portfolios
with cardinality constraints. We used two objective
functions: (i) maximizing the predictability parameter;
and (ii) maximizing the mean return. The portfolio
optimizations have been carried out by stochastic
search and FFNNs. The proposed trading algorithms
can reach profit on real financial time series. The
performance analysis demonstrated that portfolio
selection based on the novel objective functions
(maximizing the average profit), could increase trading
efficiency and profit compared to the traditional λ

optimization strategy. Also introducing FFNNs can
slightly improve the performance. However, there is
a room for improvement on the trading strategies in
order to take other factors (e.g. introducing stop loss)
into consideration, as well.

Appendix

In order to solve the maximization problem stated
in (17), we need to equate the partial derivative of the
function to zero with respect to time (the function has
only one extremum, namely the global maximum we
are looking for):

∂

∂t

(
(µ0 − µ) e−ϑt + µ

(1 + rf )t
− xT s0

)
= 0. (51)

Partially differentiate this expression yields the follow-
ing function:

∂

∂t

(
(µ0 − µ) e−ϑt + µ

(1 + rf )t
− xT s0

)

=
e−ϑt (µ− µ0) (ϑ+ ln (1 + rf ))− µ ln (1 + rf )

(1 + rf )t
.

(52)

Then by solving the equation, we obtain the optimal
solution in (18):

e−ϑt (µ− µ0) (ϑ+ ln(1 + rf ))− µ ln(1 + rf )
(1 + rf )t

= 0
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e−ϑt =
µ ln(1 + rf )

(µ− µ0) (ϑ+ ln(1 + rf ))

t =
1
−ϑ

ln
(

µ ln(1 + rf )
(µ− µ0) (ϑ+ ln(1 + rf ))

)
=

1
ϑ

ln
(

(µ− µ0) (ϑ+ ln(1 + rf ))
µ ln(1 + rf )

)
.
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