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Abstract

Vanna-Volga method, known as the traders rule of thumb, is commonly used in FX option market
to manage implied volatility surface and hedge against the movement of underlying asset price.
However, this method has not attracted much attention in other derivative markets. This es-
say investigates Vanna-Volga method and two approximation of Vanna-Volga implied volatility in
equity option market. By pricing European call option written on S&P 500 index, the numeri-
cal results evidence the efficiency of Vanna-Volga method and its two approximation for building
smile-consistent implied volatility of equity index option.
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1 Introduction

By virtue of huge liquidity and price transparency, the FX market is in a strong position when
comes to taking a precise approach to study the intricacies of options 2. Vanna-Volga method is
commonly adopted to price the first generation of exotic option in FX option market, but it has
not attracted much attention in other derivative markets. This paper investigates the efficiency
of Vanna-Volga method and two approximation of Vanna-Volga implied volatility in equity option
market.

For option pricing, the nontrivial issue is how to build a smooth, consistent and arbitrage-
free implied volatility surface that encapsulates the information of the distribution of underlying
asset price for a given maturity. Building implied volatility surface requires the full continuum of
option price across expiry and strike. However, only a discrete set of option prices are observable
in the market. Therefore, for a given expiry, the entries of liquidly traded options on volatility
surface can be computed directly by their market prices, whereas the rest of volatility surface must
resort to interpolation and extrapolation. Consequently, we need an efficient tool for arbitrage-free
interpolation and extrapolation of volatility surface in both strike and maturity dimension.

Vanna-Volga method is an efficient approach when it is used to interpolate smile-consistent
implied volatility of currency option for a given maturity. This method is easy to be implemented
and only three market quotes of liquidly traded instruments are required. Vanna-Volga method
depends on the construction of a locally replicating portfolio which is vega-neutral in Black-Scholes
flat-smile world. It can yield implied volatility for any options’ delta, particularly for those outside
the basic range set by the ∆25 put and call quotes. It allows one to compute different vega risk
in a consistent manner and hedge exotic option. However, Vanna-Volga method may produce
negative price for extremely large Risk Reversal values in currency market and for extreme strikes
in equity market. Therefore, Vanna-Volga procedure must be handled with care when the wings
are valued.

Vanna-Volga method was first introduced in literature by Lipton and McGhee (2002). They
analyse various pricing inconsistencies that arise from the non-rigorous nature of the technique,
and adjust the Black-Scholes value of double-no-touch options by incorporating the hedging cost.
Vanna-Volga method is applied on one-touch option in currency market in Wystup (2003). Castagna
and Mercurio (2007) detail the Vanna-Volga procedure and provide the mathematical justification
on vanilla option. They suggest that Vanna-Volga method can be extended efficiently to other
markets. Fisher (2007) suggests a number of corrections of Vanna-Volga to handle the pricing in-
consistencies. Shkolnikov (2009) presents a more rigorous and theoretical justification and extends
Vanna-Volga method to include interest-rate risk. Bossens, Rayee, Skantzos and Deelstra (2010)
describe two variations and propose a simple calibration method for pricing a wide range of exotic
options.

By taking the advice in Castagna and Mercurio (2007), this paper investigates the efficiency of
Vanna-Volga method when it is used for pricing equity index option. To the best of my knowledge,
this is the first paper studying the performance of Vanna-Volga method on pricing equity option

2In FX market, the typical books have a small number of underlying securities and a massively complex positions,
which often broken into only two or three big option books with a huge number of strikes. The books of the equity stock
market are usually consist of a number of small but not complex positions in a wide range of underlying securities.
This fact gives rise to that the equity market has grown more in the direction of correlation-based products.
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written on S&P 500 index. Apart from Vanna-Volga pricing formula, two approximation of Vanna-
Volga implied volatility are also studied in this paper. By pricing the same European call option,
the numerical experiments evidence the efficiency of these three approaches. They can perfectly
match the market price within the interval of three quotes. For ITM option, the bias between
market price and the 1st approximation of Vanna-Volga implied volatility is the smallest, even for
the extremely short maturities. The study results show the high efficiency of Vanna-Volga method
and its two approximation for generating the smile-consistent implied volatility in equity option
market.

The rest of the paper is organized as follows. Vanna-Volga method and two approximation of
Vanna-Volga implied volatility are introduced in Section 2. Section 3 details the application of
Vanna-Volga method in equity option market. The numerical experiments are presented in Section
4. Finally, Section 5 concludes.

2 Vanna-Volga Method

Vanna-Volga method is based on the construction of locally risk free replicating portfolio whose
hedging costs are added to the Black-Scholes option price to produce smile-consistent prices. It
yields a good approximation of volatility smile, especially within the range delimited by the two
extreme strikes. Vanna-Volga method has several advantages. First, it is an efficient tool for
interpolating and extrapolating volatility for a given maturity while reproducing exactly the market
quoted volatilities. Second, it can be employed in any market where at least three volatility quotes
are available for a given maturity. Third, this method can derive implied volatilities for any options
delta, particularly for those outside the basic range set by the ∆25 put and call quotes. Fourth, this
non-parametric method produces a consistent and complete smile with just three prices for each
maturity. Fifth, it is supported by a clear financial rationale based on a hedging argument. Finally,
this method allows for the automatic calibration to the three input volatilities derived from market
prices and acts as an explicit function of them.

2.1 Vegga, Vanna and Volga

The measurement of the sensitivity of option value with respect to the change of either the state
variable or the model parameter is known as the Greek. The Greeks Vega, Vanna and Volga are
related to the sensitivities of option value with respect to the change of volatility.

2.1.1 Vega

If the financial derivative has a convex structure, it has a Vega; if the financial derivative has a
linear structure such as a forward, then it does not have Vega. The highly positive or negative Vega
implies that the portfolio is very sensitive to the small changes of volatility. If the value of Vega
is close to zero, it suggests that the volatility has little impact on the value of the portfolio. Vega
tells the change in value of the portfolio with respect to a discrete move in volatility for a given
percentage level, such as the change of option price with respect to a one percent point change of
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the volatility.

Vega follows a bell shape. The ATM Vega is the peak and it decreases more and more for
deep ITM and OTM options. The ATM Vega is stable to volatility but it is convex for deep ITM
and OTM Vegas. Generally, the Vega of most derivatives decreases with time. For some exotic
options, Vega increases with time under certain conditions, such as lookback and reverse knock out
options.

Vega is important for design and maintenance of an effective hedging, and the hedging shouls
be adjusted as Vega moves. It is easy to understand Vega of plain vanilla option. However, when
it comes to exotic option, it becomes crucial to monitor the change of Vega with respect to other
parameters, such as the spot and implied volatility. Vega is derived by

Vega = S0

√
T − tN ′(d1)e−q(T−t) (1)

In case of no dividend, i.e. q = 0, equation (1) is equivalent to:

Vega = S0

√
T − tN ′(d1) (2)

where

N ′(d1) = e(−d2
1/2) 1

2π

d1 =
ln(S/K) + r − q + σ2/2(T − t)

σ
√
T − t

(3)

Vega in terms of Gamma is given by:

Vega = Gamma · S2
t (T − t)σ

=
∂∆

∂S
S2
t (T − t)

=
N ′(d1)

Stσ
√
T − t

S2
t (T − t)

(4)

The Black-Scholes model cannot take care of the sensitivity of Vega due to the Vega-neutral position
is subject to changes of spot and volatility. Therefore, we need to know the sensitivity of Vega to the
changes in spot and implied volatility. The measurement of its sensitivity to these two parameters
are represented by Vanna and Volga, respectively.

2.1.2 Vanna

The option’s Vanna, which is the second order cross Greek, represents the risk to the skew increas-
ing. It is used to monitor the Vega exposure or cross Gamma risk on Delta with respect to the
change of the spot. Vanna can be defined in three different ways:

• ∂V
∂S : the change of Vega V with respect to the change in underlying price S

• ∂∆
∂σ : the sensitivity of Delta ∆ with respect to the change in volatility σ

• ∂2P
∂σ∂S : the sensitivity of option value P with respect to a joint movement in
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volatility σ and the underlying price S

In Black-Scholes model, Vanna of simple option with closed form is derived by:

Vanna = e−qt
√
T − tN ′(d1)(d2/σ) (5)

In case of no dividend, i.e. q = 0, equation (5) is equivalent to:

Vanna =
√
T − tN ′(d1)(1− d1) (6)

The algebraic expression of Vanna in terms of Vega reads:

Vanna = Vega · d2

Sσ

= S
√
T − tN ′(d1)

d2

Sσ

=
√
T − tN ′(d1)(

d2

σ
)

(7)

The call and put options with the same strike K have same Vanna.

2.1.3 Volga

The option’s Volga or volatility Gamma represents the sensitivity of Vega with respect to the
change in volatility and shows the risk to the smile becoming more pronounced. It measures the
convexity of option price with respect to volatility. The relationship between convexity and duration
is same as the relationship between Gamma and Delta. The option with high volga can benifit
from volatility of volatility. Volga can be defined in two different ways:

• ∂V
∂σ : the change in Vega V with respect to a change in volatility σ

• ∂2P
∂σ2 : the second derivative of option value P with respect to changes in volatility σ

Volga = e−qt
√
T − tN ′(d1)(

d1d2

σ
) (8)

where d2 = d1 − σ
√
T − t. Volga in terms of Vega is expressed as:

Volga = Vega · d1d2

Sσ

= S
√
T − tN ′(d1)

d1d2

Sσ

=
√
T − tN ′(d1)

d1d2

σ

(9)

2.2 The Vanna-Volga Option Pricing Formula

The Vanna-Volga option price CVV(K) is obtained by adding to the Black-Scholes theoretical price
CBS(K) the cost difference of the hedging portfolio induced by the market implied volatilities with
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respect to the constant volatility σ:

CVV(K) = CBS(K) +
3∑
i=1

xi(K)

(
CM(Ki)− CBS(Ki)

)
(10)

where CM(K) denotes the observed market call option price for strike K.

The Vanna-Volga option pricing formula (10) was proposed without assumption of the distri-
bution of the underlying asset price. The first step is to build a hedging portfolio of three options
C(Ki, T ) with same maturity T but different strikes Ki, {i = 1, 2, 3}, so that the portfolio can hedge
the price variations of the call C(K,T ) with maturity T and strike K , up to the second order in
the underlying and the volatility. Denothing by ∆t and xi the units of underlying asset and options
with strike Ki held at time t, respectively, under diffusion dynamics both for St and σt, by Itô’s
lemma we have:

dCBS(t,K)−∆tdSt −∆tδStdt−
3∑
i=1

xidC
BS
i (t) =[

∂CBS(t,K)

∂t
−

3∑
i=1

xi
∂CBS(t)

∂t
−∆tδSt]dt

+ [
∂CBS(t,K)

∂S
−∆t −

3∑
i=1

xi
∂CBSi (t)

∂S
]dSt

+ [
∂CBS(t,K)

∂σ
−

3∑
i=1

xi
∂CBSi (t)

∂σ
]dσt

+
1

2
[
∂2CBS(t,K)

∂S2
−

3∑
i=1

xi
∂2CBSi (t)

∂S2
](dSt)

2

+
1

2
[
∂2CBS(t,K)

∂σ2
−

3∑
i=1

xi
∂2CBSi (t)

∂σ2
]dσtdσt

+ [
∂2CBS(t,K)

∂S∂σ
−

3∑
i=1

xi
∂2CBSi (t)

∂S∂σ
]dStdσt

(11)

We zero out the coefficients of dSt, dσt, dσtdσt, and dStdσt, so that no stochastic terms are involved
in its differential. Accordingly, the replicating portfolio is locally risk-free at time t (given that
Gamma and other higher order risks can be ignored) and has a return at risk free rate. Applying
the Black-Scholes partial differential equation, we get:

dCBS(t,K)−∆tdSt −∆tδStdt−
3∑
i=1

xidC
BS
i (t) = r

(
CBS(t,K)−∆tSt −

3∑
i=1

xiC
BS
i (t)

)
dt (12)

Equation (12) shows that, when volatility is stochastic and option are priced by the Black-Scholes
formula, one still have a locally perfect hedge.

It is assumed that the position is Delta-hedged, and the replicating portfolio in Black-Scholes
flat-smile world is both Vega-neutral and Gamma-neutral. Under these assumptions, the weights
xi {i = 1, 2, 3} can be solved by imposing that the replicating portfolio and call option have the
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same Vega (i.e. ∂CBS/∂σ), Vanna (i.e. ∂2CBS/∂σ∂S), and Volga (i.e. ∂2CBS/∂σ2) :

∂CBS

∂σ
(K) =

3∑
i=1

xi(K)
∂CBS

∂σ
(Ki)

∂2CBS

∂σ2
(K) =

3∑
i=1

xi(K)
∂2CBS

∂σ2
(Ki)

∂2CBS

∂σ∂S0
(K) =

3∑
i=1

xi(K)
∂2CBS

∂σ∂S0
(Ki)

(13)

By solving equations of the system (13) with

∂CBS

∂σ
(K) = S0 e−qT

√
T φ

(
d1(K)

)
(14)

∂2CBS

∂σ2
(K) =

ν(K)

σ
d1(K)d2(K) (15)

∂2CBS

∂σ∂S0
(K) = − ν(K)

S0 σ
√
T
d2(K) (16)

d1(K) =
ln(S0/K) + (r − q + 1/2 σ2) T

σ
√
T

(17)

d2(K) = d1(K)− σ
√
T (18)

we derive the unique solution of the weights:

x1(K) =
ν(K)

ν(K1)

ln(K2/K)ln(K3/K)

ln(K2/K1)ln(K3/K1)

x2(K) =
ν(K)

ν(K2)

ln(K/K1)ln(K3/K)

ln(K2/K1)ln(K3/K2)

x3(K) =
ν(K)

ν(K3)

ln(K/K1)ln(K/K2)

ln(K3/K1)ln(K3/K2)

(19)

where ν(K) = ∂CBS

∂σ (K), and φ(·) is the normal density function. If K = Kj , then xi(K) = 1
for i = j and zero otherwise. The Vanna-Volga option price CVV(K) is twice differentiable and
satisfies the following no-arbitrage conditions:

1. limK→0C
VV(K) = S0e

−δT and limK→+∞C
VV(K) = 0

2. limK→0(∂C/∂K)(K) = −e−rT and limK→+∞K(∂C/∂K)(K) = 0

These properties follow from the fact that, for each i, both xi(K) and ∂xi(K)/∂K go to zero for
K → 0 or K → +∞. To avoid arbitrage, the Vanna-Volga option price CVV(K) should be a convex
function of the strike K, i.e. ∂2C(K)/∂K2 > 0 for each K > 0. This property holds for typical
market parameters. Therefore, the equation (10) leads to the arbitrage-free option price.

2.3 The Risk-neutral Density

For each strike, the option price identifies its consistent and the unique risk-neutral density. The
study of Breeden and Litzenberger (1978) shows that the second derivative of call option price with
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respect to strike price yields the risk-neutral density p(K,T ):

p(K,T ) = erT
∂2C

∂K2
(20)

= erT
(
∂2CBS

∂K2
(K) +

∑
i∈1,2,3

∂2xi
∂K2

(K)

(
CM (Ki)− CBS(Ki)

))
(21)

= erT
∂2CBS

∂K2
(K) + erT

∑
i∈1,2,3

∂2xi
∂K2

(K)

(
CM (Ki)− CBS(Ki)

)
(22)

with

∂2x1

∂K2
(K) =

ν(K)

K2σ2Tν(K1)ln(K2/K1)ln(K3/K1)

×
((

d1(K)2 − σ
√
Td1(K)− 1

)
ln
K2

K
ln
K3

K

− 2σ
√
Td1(K)ln

K2K3

K2
+ σ2T

(
ln
K2K3

K2
+ 2

))
(23)

∂2x3

∂K2
(K) =

ν(K)

K2σ2Tν(K3)ln(K3/K1)ln(K3/K2)

×
((

d1(K)2 − σ
√
Td1(K)− 1

)
ln
K2

K
ln
K1

K

− 2σ
√
Td1(K)ln

K1K2

K2
+ σ2T

(
ln
K1K2

K2
+ 2

))
(24)

The first term in the right hand side of formula (22) is Black-Scholes log-normal density with drift
r − q and volatility σ = σ2.

2.4 The 1st and the 2nd Approximation of Vanna-Volga Implied Volatility

The option pricing formula (10) combined with the system of equations (19) lead to a straightfor-
ward approximation for implied volatility. By expanding both members of equation (10) at first
order in σ = σ2, the Vanna-Volga call option price is approximated as:

CV V (K) ≈ CBS(K) +

3∑
i=1

xi(K)ν(Ki)(σi − σ) (25)

Since the unique solution of weights xi and the fact that
∑3

i=1 xi(K)ν(Ki) = ν(K), equation (25)
leads to

CV V (K) ≈ CBS(K) + ν(K)

( 3∑
i=1

Xi(K)σi − σ
)

(26)
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where

X1(K) =
ln(K2/K) ln(K3/K)

ln(K2/K1) ln(K3/K1)

X2(K) =
ln(K/K1) ln(K3/K)

ln(K2/K1) ln(K3/K2)
(27)

X3(K) =
ln(K/K1) ln(K/K2)

ln(K3/K1) ln(K3/K2)

Comparing equation (26) with the first-order Taylor expansion

CV V (K) ≈ CBS(K) + ν(K)

(
%(K)− σ

)
(28)

we derive the first approximation of implied volatility:

%(K) ≈ %1(K) := X1(K)σ1 + X2(K)σ2 + X3(K)σ3 (29)

The equation (29) shows that the implied volatility %(K) can be approximated by a simple linear
combination of volatilities σ1, σ2 and σ3, and their weights X1, X2 and X3 sum to one. Apparently,
this approximation is a quadratic function of log-strike. It suggests that we can resort to a simple
parabolic interpolation when log coordinates are used. Nevertheless, due to this approximation
is a quadratic function of log-strike, the arbitrage free condition derived by Lee (2004) for the
asymptotics of implied volatility are violated. The second approximation proposed by Castagna
and Mercurio (2007 b), which is asymptotically constant at extreme strikes, aims to overcome this
drawback. By expanding both members of equation (10) at second order in σ = σ2, we get

C(K) ≈ CBS(K) +
3∑
i=1

xi(K)

[
ν(Ki)(σi − σ) +

1

2

∂2CBS

∂2σ
(Ki)(σi − σ)2

]
(30)

The second-order Taylor expansion yields

C(K)− CBS(K) ≈ ν(K)

(
%(K)− σ

)
+

1

2

∂2CBS

∂2σ
(K)

(
%(K)− σ

)2

(31)

Comparing equation (30) with equation (31), we get

ν(K)

(
%(K)− σ

)
+

1

2

∂2CBS

∂2σ
(K)

(
%(K)− σ

)2

≈
3∑
i=1

xi(K)

[
ν(Ki)(σi − σ) +

1

2

∂2CBS

∂2σ
(Ki)(σi − σ)2

] (32)

The second approximation of implied volatility is obtained by solving equation (32) :

%(K) ≈ %2(K) := σ2 +
−σ2 +

√
σ2

2 + d1(K)d2(K)
[
2σ2D1(K) +D2(K)

]
d1(K)d2(K)

(33)
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where

D1(K) =
ln(K2/K) ln(K3/K)

ln(K2/K1) ln(K3/K1)
σ1 +

ln(K/K1) ln(K3/K)

ln(K2/K1) ln(K3/K2)
σ2

+
ln(K/K1)ln(K/K2)

ln(K3/K1) ln(K3/K2)
σ3 − σ2

D2(K) =
ln(K2/K) ln(K3/K)

ln(K2/K1) ln(K3/K1)
d1(K1) d2(K1)(σ1 − σ2)2

+
ln(K/K1) ln(K/K2)

ln(K3/K1) ln(K3/K2)
d1(K3) d2(K3)(σ3 − σ2)2

(34)

Castagna and Mercurio (2007 b) argued that the second approximation is not only accurate
within the interval [K1,K3], but also in the wings, even for extreme values of put Deltas. However,
although the radiant is positive in most practical applications, the volatility %(K) may not be
defined due to the presence of a square-root term.

In order to exhibit the goodness of the 1st and 2nd approximation of implied volatility, a graph-
ical example is provided by Figure 1. It compares the volatility smiles of currency option generated
by Vanna-Volga option pricing formula, 1st approximation and 2nd approximation. The plots are
generated with the following data: S0 = 1.195, T = {14D, 1M, 6M, 9M, 1Y, 2.5Y, 5Y, 10Y, 15Y },
K1 = 1.18, K2 = 1.22, K3 = 1.265, σ1 = 9.43%, σ2 = 9.05%, σ3 = 8.93%. The discount factor for
domestic and foreign markets are rd = 0.9902752 and rf = 0.9945049, respectively. For each T , the
discount factor is rescaled by −log(rd)/T and −log(rf )/T . The plots discover that both the 1st
and 2nd approximation can match Vanna-Volga implied volatility perfectly at the ATM region. For
expiration less than 2.5 years, the implied volatility generated by the 2nd approximation is much
closer to Vanna-Volga implied volatility, even for the wings. The 1st approximation overestimates
the volatility on both wings for all expirations. However, as T →∞, the 2nd approximation tends
to produce the same implied volatility as the 1st approximation.

3 Applying Vanna-Volga Method in Equity Option Market

For a given expiration, although a volatility smile has as many degrees of freedom as considered
strikes, it is reasonable to assume that there are only three degrees of freedom: level, steepness and
convexity. Practically, most of shape variations can be explained by a parallel shift of the smile,
by a tilt to the right or to the left, or by a relative change of wings with respect to the center
strike. In FX option market, the application of Vanna-Volga method requires three quotes for a
given expiration:

• ATM volatility associated with delta-neutral straddle 3: it is the indicator of the level
of volatility smile

• Risk Reversal for 25 delta call and put 4: it is the measure of the steepness of the smile

3Delta-neutral straddle denotes ∆C+∆P = 0, with ∆C and ∆P represents delta of call and put option, respectively.
425 delta means the level of delta is 25%; 25 delta call is a call option whose delta is 25%; 25 delta put is a put

option whose delta is −25%.
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Figure 1: Vanna Volga Implied Volatility, 1st and 2nd Approximation of Implied Volatility
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• Vega Weighted Butterfly with 25 delta wings: it is the measure of convexity

These two delta level are introduced due to they are almost midway between the center of the
smile and the extreme wings (zero delta put and zero delta call) and due to they are the strikes
associated with high Volga, hence containing a good deal of information on the underlying asset’s
fourth moment, and thus on the curvature of the smile. Wystup (2008) argued that it is not clear
up front which target delta to use for Risk Reversal and Butterfly. In his study, the delta level is
determined merely based on the basis of its liquidity.

In FX option market, the implied volatility smile is built by sticky delta rule. The convention of
equity option market is different from that of the FX option market. When Vanna-Volga method
is applied in equity market, we need a volatility matrix that is presented in the same compact form
as in the FX option market ( i.e., the volatility matrix provides us the ATM implied volatility, the
25∆ Risk Reversal, and the 25∆ Butterfly for each expiration).

The procedure for building such a volatility matrix is outlined in the Algorithm below:

1. For each expiration, find out the strike K̂2 which is the nearest to the forward price and its
corresponding implied volatility σ̂2. The implied volatility σ̂2 will be used for iteration in step
3 and 4.

2. Detect two strikes K̂1 and K̂3 which yield the absolute value of delta of put and call as near
as possible to 25%, satisfying K̂1 < K̂2 < K̂3. And back out their corresponding volatilities
σ̂1 and σ̂3. The implied volatilities σ̂1 and σ̂3 will be used for iteration in step 4.

3. Compute the ATM strike K2 and its corresponding volatility σ2 by an iterative procedure.
The ATM strike is referred to zero-delta straddle. For each given expiry, it is chosen so that
a put and a call have the same delta but with different sign. Accordingly, denoting by σATM
and KATM the ATM volatility and ATM strike, respectively, we get

e−qTΦ(
ln(S0/KATM )(r − q + 1

2σ
2
ATM )T

σATM
√
T

) = e−qTΦ(−
ln(S0/KATM )(r − q + 1

2σ
2
ATM )T

σATM
√
T

)

(35)
Remember that K2 = KATM and σ2 = σATM . From equation (35), we know ATM strike can
be computed by

KATM = S0e
(r−q+ 1

2
σ2)T (36)

As long as we obtain the ATM strike, we can compute option price using equation (10).
Then, back out the ATM implied volatility using Black-Scholes pricing formula. Explicitly,
the iterative procedure is:

i. Set the constant volatility σ to be σ̂2,

ii. Ki
ATM = S0e

(r−q+ 1
2
σ2
i−1)T (i denotes ith iteration; for i = 1, σi−1 = σ),

iii. C(Ki
ATM ) = CBS(Ki

ATM ) +
∑3

j=1 xj(K
i
ATM )[CMKT (Kj)−CBS(Kj)], with CBS derived

by plugging in the Black-Scholes equation the constant volatility σ,

iv. σi = (CBS)−1

(
C(Ki

ATM )

)
(this formula implies that plugging σi into the Black-Scholes

formula will yield C(Ki
ATM )),
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v. Iterate from point (ii) until Ki
ATM −K

i−1
ATM < ε, ε suitably small,

vi. Obtain the ATM strike KATM with its implied volatility σATM .

4. Compute implied volatilities and strikes of 25 delta call and put by iteration. In order to
derive the strike, we first need to calculate the implied volatility of 25 delta call and put in
terms of Risk Reversal σRR and Vega Weighted Butterfly σVWB . The formulae of σRR and
σVWB

σRR = σ25∆C − σ25∆P (37)

σVWB =
σ25∆C + σ25∆P

2
− σATM (38)

lead to

σ25∆C = σATM + σVWB +
1

2
σRR (39)

σ25∆P = σATM − σVWB +
1

2
σRR (40)

The delta of call and put are computed by

e−rTΦ(
ln(S0/K25∆C) + (r + 1

2σ
2
25∆P )T

σ25∆P

√
T

) = 0.25

−e−rTΦ(−
ln(S0/K25∆C) + (r + 1

2σ
2
25∆P )T

σ25∆P

√
T

) = −0.25

(41)

the straightforward algebra yields

K25∆C = S0e
ασ25∆C

√
T+(r+ 1

2
σ2

25∆C)T (42)

K25∆P = S0e
−ασ25∆P

√
T+(r+ 1

2
σ2

25∆P )T (43)

α = −Φ−1(H erT ) (44)

where H denotes the absolute value of delta level, and Φ−1 is the inverse normal distribution
function. We assume that α is positive for typical market parameters and maturities up to
two years. The strikes must satisfy K25∆P < KATM < K25∆C .

The iterative procedure for 25 delta call is:

i. Ki
25∆C = S0e

ασi−1,25∆C

√
T+(r+ 1

2
σ2
i−1,25∆C)T ,

(i denotes ith iteration; for i = 1, σi−1,25∆C = σ̂3),

ii. C(Ki
25∆C) = CBS(Ki

25∆C) +
∑3

j=1 xj(K
i
25∆C)[CMKT (Kj)−CBS(Kj)], with CBS derived

by plugging in the Black-Scholes equation the constant volatility σ,

iii. σi,25∆C = (CBS)−1C(Ki
25∆C), (this formula implies that plugging σi,25∆C into the Black-

Scholes formula will yield C(Ki
25∆C)),

iv. iterate from step (ii) until Ki
25∆C −K

i−1
25∆C < ε, ε suitably small,

v. Now, obtain strikes K25∆C and the corresponding implied volatilities σ25∆C .

12



The procedure i to v should be repeated for each expiration.

The iterative procedure for 25 delta put is:

i. Ki
25∆P = S0e

−ασi−1,25∆P

√
T+(r+ 1

2
σ2
i−1,25∆P )T ,

(i denotes ith iteration; for i = 1, σi−1,25∆P = σ̂1),

ii. C(Ki
25∆P ) = CBS(Ki

25∆P ) +
∑3

j=1 xj(K
i
25∆P )[CMKT (Kj)−CBS(Kj)], with CBS derived

by plugging in the Black-Scholes equation the constant volatility σ,

iii. σi,25∆P = (CBS)−1C(Ki
25∆P ), (this formula implies that plugging σi,25∆P into the Black-

Scholes formula will yield C(Ki
25∆P )),

iv. iterate from step (ii) until Ki
25∆P −K

i−1
25∆P < ε,ε suitably small,

v. Now, obtain strikes K25∆P and the corresponding implied volatilities σ25∆P .

The procedure i to v should be repeated for each expiration.

5. So far, we have built the volatility smile for the traded expirations by implementing above
procedures. Now, we can interpolate / extrapolate a volatility surface in terms of fixed time-
to-maturity periods.

4 Numerical Experiments

My study investigates the Vanna-Volga method and its two approximation by pricing call option
written on S&P 500 index, April 22, 2016. The data is provided by OptionMetrics. The forward
price F is derived via Put-Call parity. The pseudo code in Appendix D outlines the computation
of the forward price using optimization method. After deriving the forward price F, the dividend
q is computed by

q = r − log(F/S0)

T
(45)

where r denotes risk-free rate, and the underlying price S0 of April 22, 2016 is 2091.58. My results
of forward price and the related dividend for different expirations are presented in Table 1.

After obtaining the forward price and dividend, I implement the first two steps of the iterative
procedure (outlined in Algorithm in Section 3) for each expiration to detect K̂i and σ̂i, i = 1, 2, 3.
The results are listed in Table 2. For each expiration, the ATM strike K̂2 is close to the forward
price presented in Table 1. The values of ∆(P ) and ∆(C) in the 5th and 10th column show that
K̂1 and K̂3 are strikes of the put and call whose delta level approximates 25. The strikes of each
expiration satisfy that K̂1 < K̂2 < K̂3.
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Table 1: Forward Price and Dividend

Expiry Days Forward Dividend

2016-04-29 7 2091.561 0.0216

2016-05-13 21 2089.225 0.0239

2016-07-29 98 2083.421 0.0209

2016-09-30 161 2076.923 0.0229

2016-12-30 252 2070.583 0.0222

2017-03-17 329 2064.752 0.0223

2017-12-15 602 2047.915 0.0218

2018-12-21 973 2032.327 0.0213

Table 2: Detected Strikes and Implied Volatilities before Iteration

Expiry Days
Put ATM Call

K̂1 σ̂1 ∆(P ) K̂2 σ̂2 K̂3 σ̂3 ∆(C)

2016-04-29 7 2069 0.1312 -0.2524 2092 0.1156 2114 0.1047 0.2491

2016-05-13 21 2053 0.1283 -0.2523 2089 0.1117 2128 0.0956 0.2502

2016-07-29 98 1990 0.1701 -0.2507 2083 0.1402 2193 0.1048 0.2502

2016-09-30 161 1952 0.1820 -0.2492 2077 0.1509 2232 0.1124 0.2495

2016-12-30 252 1913 0.1924 -0.2503 2071 0.1601 2250 0.1242 0.2840

2017-03-17 329 1884 0.1994 -0.2497 2065 0.1662 2250 0.1333 0.3144

2017-12-15 602 1825 0.2106 -0.2604 2048 0.1806 2250 0.1533 0.3723

2018-12-21 973 1825 0.2116 -0.2912 2032 0.1910 2250 0.1700 0.4084

With K̂i and σ̂i, i = 1, 2, 3, I compute Ki and σi, i = 1, 2, 3, by implementing step 3 and 4
of Algorithm detailed in Section 3. After iteration, I obtain the ATM implied volatility, and
implied volatilities of 25 delta call and put. With these information, Risk Reversal and Vega
Weighted Butterfly are computed using equations (37) and (38), respectively. The volatility matrix
expressed in compact form as in FX option market is shown in Table 3.

Next, for different delta levels, I interpolate and extrapolate the volatility surface between
expiries ranging from 4 days to 10 years. The absolute value of investigated delta levels are ∆ =
0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50. The graphical result of implied volatility surface is
exhibited by Figure 2. The absolute value of put delta and call delta are on the left and right hand
side of the x-axis, respectively. The ATM zero-delta strike is the center of the x-axis. For saving the
space, numerical results for only ∆ = 0.25 are presented in Table 4. The features of volatility surface
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Table 3: Implied Volatility Surface in Compact Form Obtained by Iteration

Expiry σATM RR25∆ VBF25∆

2016-04-29 0.1161 -0.0251 0.0022

2016-05-13 0.1113 -0.0300 0.0017

2016-07-29 0.1383 -0.0553 0.0044

2016-09-30 0.1485 -0.0574 0.0044

2016-12-30 0.1567 -0.0628 0.0036

2017-03-17 0.1600 -0.0657 0.0050

2017-12-15 0.1737 -0.0564 0.0077

2018-12-21 0.1820 -0.0405 0.0082

are rather easily recognisable when the surface is expressed in terms of ATM straddle, Risk Reversal
and Vega Weighted Butterfly. Risk Reversal decrease as expiry increase, whereas Vega Weighted
Butterfly increase as expiry increase. The volatility surface exhibits non-flat instantaneous profile
and strike and term structure.
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Figure 2: Implied Volatility Surface
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With information of ATM volatility, Risk Reversal and Vega Weighted Butterfly, for each ex-
piry, the implied volatilities of 25 delta call and put are computed using equation (39) and (40),
respectively. The results listed in the 5th and 6th columns in Table 4 show that implied volatilities
of call and put increase as T → ∞. Once obtaining the information of Table 4, the strikes for 25
delta put, ATM and 25 delt call (i.e. K1, K2, K3) can be computed using equation (43), (36) and
(42), respectively. My results of strikes of each expiry are presented in Table 5. For each expiry,
strikes satisfy K1 < K2 < K3.

So far, I have obtained strike Ki and implied volatility σi, i = 1, 2, 3, for each expiry. Now,
the Vanna-Volga pricing formula, and its 1st and 2nd approximation can be used to price the
equity option with Ki and σi, i = 1, 2, 3, for each expiry. In order to evaluate the goodness of
these three approaches, my paper compares the model price with sparse market price provided by
OptionMetrics. The results are graphically illustrated by plots in Appendix A. The orange cross
sign in each plot represents the real market implied volatility. Implied volatility smile generated by
Vanna-Volga pricing formula, its 1st and 2nd approximation are denoted by purple, red and blue
dashed line, respectively. The plots discover some interesting results. First, for each expiry, implied
volatility produced by these three approaches are extremely accurate inside the interval [K1,K3].
Second, for each expiry, implied volatility generated by the 1st approximation is much closer to
the real implied volatility of ITM option. Third, the 2nd approximation can perfectly approximate
Vanna-Volga implied volatility of ITM, ATM and OTM options. The bias between Vanna-Volga
implied volatility and its 2nd approximation decreases as expiry T becomes larger. Fourth, Vanna-
Volga implied volatility and its 2nd approximation approach the real implied volatility of ITM
option as expiry T becomes larger. The plots in Appendix C compare the risk-neutral density
generated using formula (22) and Black-Scholes formula.

The more explicit comparison of market price and model price are presented in Table 6. For
saving the space, only numerical results for T = (5D, 28D, 69D, 84D) are listed in the table. The
real market implied volatility is σmarket. Implied volatility computed by Vanna-Volga, 1st and
2nd approximation are σV V , σ1st and σ2nd, respectively. The last three columns are Bias 1 =
σmarket−σV V , Bias 2 = σmarket−σ1st, and Bias 3 = σmarket−σ2nd. The results show that, for each
expiry, Bias 2 is always the smallest for each strike. Bias 3 is very close to Bias 1 in all cases. For
ATM option, the biases of three approaches are always the smallest. As expiry increases, Bias 1
and Bias 3 for ITM option decrease. Appendix B provides the plots to compare the bias from three
approaches.

5 Conclusion

This paper applies Vanna-Volga method and two approximation of Vanna-Volga implied volatility
on pricing equity option written on S&P500 index. My findings are as follow. First, for pricing ITM
option, the 1st approximation performs better than Vanna-Volga method and the 2nd approxima-
tion, particularly for short maturity. Second, as T → ∞, the results of Vanna-Volga method and
the 2nd approximation approach the result of the 1st approximation. Third, Vanna-Volga method
and its two approximation generate accurate implied volatilities inside the interval [K1,K3].

In a nutshell, the advantages of Vanna-Volga method and its two approximation are evident.
Only three quotes are required for using these approaches. They yield the reliable volatility smile
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for equity option, even for the extremely short maturity. Since calibration is unnecessary, therefore
we can avoid the issues related to instability and global minimum searching. Vanna-Volga method
depends on the shape of volatility surface. It performs well when volatility surface is standard, i.e.
symmetric smile and typical skew.
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Table 4: Risk Reversal, Butterfly, and Implied Volatility for 25 Delta Level

Expiry σ(ATM) Risk Reversal Butterfly σ(C) σ(P ) Delta Level

2016-04-27 0.1101 -0.0239 0.0043 0.1024 0.1263 0.25

2016-05-02 0.1126 -0.0265 0.0020 0.1013 0.1279 0.25

2016-05-09 0.1108 -0.0289 0.0020 0.0983 0.1272 0.25

2016-05-20 0.1129 -0.0345 0.0022 0.0979 0.1323 0.25

2016-05-31 0.1145 -0.0370 0.0020 0.0981 0.1351 0.25

2016-06-03 0.1183 -0.0393 0.0023 0.1010 0.1403 0.25

2016-06-24 0.1315 -0.0478 0.0034 0.1110 0.1588 0.25

2016-06-30 0.1318 -0.0485 0.0035 0.1111 0.1596 0.25

2016-07-01 0.1323 -0.0484 0.0034 0.1115 0.1599 0.25

2016-07-15 0.1340 -0.0513 0.0039 0.1122 0.1635 0.25

2016-08-19 0.1409 -0.0549 0.0041 0.1176 0.1725 0.25

2016-08-31 0.1432 -0.0559 0.0041 0.1193 0.1752 0.25

2016-09-16 0.1451 -0.0560 0.0043 0.1213 0.1773 0.25

2016-10-26 0.1507 -0.0588 0.0042 0.1256 0.1843 0.25

2016-12-16 0.1551 -0.0614 0.0039 0.1283 0.1897 0.25

2017-01-20 0.1574 -0.0645 0.0036 0.1288 0.1933 0.25

2017-01-25 0.1576 -0.0646 0.0038 0.1291 0.1937 0.25

2017-03-17 0.1600 -0.0657 0.0050 0.1322 0.1978 0.25

2017-04-25 0.1648 -0.0661 0.0055 0.1373 0.2033 0.25

2017-06-16 0.1671 -0.0646 0.0062 0.1410 0.2056 0.25

2018-04-25 0.1766 -0.0508 0.0079 0.1591 0.2099 0.25

2019-04-25 0.1849 -0.0352 0.0083 0.1756 0.2108 0.25

2020-04-27 0.1931 -0.0195 0.0087 0.1921 0.2116 0.25

2021-04-26 0.2013 -0.0039 0.0092 0.2085 0.2125 0.25

2023-04-25 0.2178 0.0272 0.0100 0.2414 0.2141 0.25

2026-04-26 0.2425 0.0741 0.0113 0.2908 0.2167 0.25
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Table 5: Strikes for ATM, 25 Delta Call and 25 Delta Put

Expiry K(∆25P ) K(ATM) K(∆25C)

2016-04-27 2070.602 2091.295 2108.242

2016-05-02 2061.515 2091.029 2114.731

2016-05-09 2052.497 2090.635 2120.602

2016-05-20 2038.914 2089.461 2127.675

2016-05-31 2027.914 2088.460 2133.559

2016-06-03 2023.603 2088.725 2136.921

2016-06-24 1998.821 2087.905 2152.623

2016-06-30 1994.786 2088.276 2156.052

2016-07-01 1993.860 2088.172 2156.703

2016-07-15 1982.560 2087.453 2162.807

2016-08-19 1958.375 2088.429 2182.260

2016-08-31 1948.937 2086.649 2186.230

2016-09-16 1939.691 2086.556 2193.758

2016-10-26 1916.857 2086.677 2211.296

2016-12-16 1892.389 2086.452 2229.160

2017-01-20 1878.359 2088.097 2240.861

2017-01-25 1876.979 2088.913 2243.510

2017-03-17 1857.177 2089.097 2260.853

2017-04-25 1841.675 2091.050 2279.680

2017-06-16 1825.763 2091.912 2298.990

2018-04-25 1761.587 2103.406 2415.444

2019-04-25 1723.682 2131.626 2564.199

2020-04-27 1699.121 2164.642 2731.858

2021-04-26 1697.437 2223.071 2951.761

2023-04-25 1712.569 2365.841 3515.555

2026-04-26 1814.389 2746.937 5035.416
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Table 6: Comparison of Implied Volatility

Strike Expiry σmarket σV V σ1st σ2nd Bias 1 Bias 2 Bias 3

1900 2016-04-27 0.4357 0.1224 0.5804 0.1534 0.3133 -0.1447 0.2823

1920 2016-04-27 0.3994 0.1246 0.4950 0.1536 0.2748 -0.0956 0.2458

1940 2016-04-27 0.3531 0.1275 0.4188 0.1537 0.2256 -0.0657 0.1994

1960 2016-04-27 0.3306 0.1311 0.3514 0.1537 0.1994 -0.0208 0.1768

1980 2016-04-27 0.2573 0.1357 0.2925 0.1536 0.1216 -0.0352 0.1037

2000 2016-04-27 0.2399 0.1411 0.2419 0.1529 0.0988 -0.0020 0.0870

2020 2016-04-27 0.1977 0.1459 0.1994 0.1510 0.0518 -0.0017 0.0467

2040 2016-04-27 0.1622 0.1459 0.1647 0.1463 0.0163 -0.0025 0.0160

2060 2016-04-27 0.1383 0.1355 0.1377 0.1352 0.0028 0.0006 0.0030

2080 2016-04-27 0.1197 0.1182 0.1180 0.1182 0.0015 0.0017 0.0015

2100 2016-04-27 0.1051 0.1055 0.1055 0.1055 -0.0004 -0.0004 -0.0004

2120 2016-04-27 0.0990 0.1000 0.1000 0.1000 -0.0010 -0.0010 -0.0010

2140 2016-04-27 0.1117 0.1022 0.1013 0.1023 0.0095 0.0104 0.0094

1900 2016-05-20 0.1854 0.1420 0.1834 0.1476 0.0434 0.0020 0.0377

1920 2016-05-20 0.1750 0.1440 0.1763 0.1478 0.0311 -0.0013 0.0272

1940 2016-05-20 0.1723 0.1455 0.1691 0.1476 0.0268 0.0032 0.0247

1960 2016-05-20 0.1657 0.1461 0.1618 0.1469 0.0196 0.0039 0.0189

1980 2016-05-20 0.1574 0.1454 0.1545 0.1453 0.0120 0.0029 0.0121

2000 2016-05-20 0.1498 0.1429 0.1470 0.1425 0.0069 0.0027 0.0072

2020 2016-05-20 0.1420 0.1383 0.1395 0.1381 0.0036 0.0024 0.0038

2040 2016-05-20 0.1339 0.1320 0.1319 0.1320 0.0020 0.0020 0.0019

2060 2016-05-20 0.1255 0.1245 0.1243 0.1245 0.0010 0.0012 0.0010

2080 2016-05-20 0.1164 0.1166 0.1166 0.1166 -0.0002 -0.0002 -0.0002

2100 2016-05-20 0.1079 0.1088 0.1088 0.1088 -0.0009 -0.0009 -0.0009

2120 2016-05-20 0.0994 0.1010 0.1009 0.1010 -0.0016 -0.0015 -0.0016

Note: Bias 1 = σmarket − σV V , Bias 2 = σmarket − σ1st, Bias 3 = σmarket − σ2nd.

Continued on next page
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Table 6 – continued from previous page

Strike Expiry σmarket σV V σ1st σ2nd Bias 1 Bias 2 Bias 3

2140 2016-05-20 0.0924 0.0924 0.0930 0.0925 0.0000 -0.0006 -0.0002

1900 2016-06-30 0.1946 0.1753 0.1866 0.1749 0.0194 0.0080 0.0197

1920 2016-06-30 0.1883 0.1737 0.1810 0.1731 0.0146 0.0073 0.0152

1940 2016-06-30 0.1822 0.1711 0.1754 0.1706 0.0111 0.0069 0.0116

1960 2016-06-30 0.1758 0.1676 0.1696 0.1673 0.0081 0.0061 0.0085

1980 2016-06-30 0.1693 0.1633 0.1639 0.1632 0.0060 0.0054 0.0061

2000 2016-06-30 0.1626 0.1582 0.1581 0.1582 0.0044 0.0045 0.0044

2020 2016-06-30 0.1556 0.1526 0.1522 0.1527 0.0030 0.0034 0.0029

2040 2016-06-30 0.1489 0.1466 0.1463 0.1467 0.0023 0.0026 0.0022

2060 2016-06-30 0.1419 0.1405 0.1403 0.1405 0.0014 0.0015 0.0013

2080 2016-06-30 0.1346 0.1343 0.1343 0.1344 0.0003 0.0003 0.0002

2100 2016-06-30 0.1275 0.1283 0.1283 0.1283 -0.0008 -0.0008 -0.0008

2120 2016-06-30 0.1203 0.1223 0.1222 0.1222 -0.0019 -0.0018 -0.0019

2140 2016-06-30 0.1134 0.1162 0.1160 0.1162 -0.0028 -0.0026 -0.0027

1900 2016-07-15 0.1945 0.1781 0.1859 0.1775 0.0164 0.0085 0.0170

1920 2016-07-15 0.1882 0.1758 0.1806 0.1752 0.0124 0.0076 0.0130

1940 2016-07-15 0.1820 0.1726 0.1752 0.1722 0.0094 0.0069 0.0098

1960 2016-07-15 0.1759 0.1687 0.1697 0.1685 0.0072 0.0062 0.0074

1980 2016-07-15 0.1695 0.1641 0.1642 0.1641 0.0054 0.0053 0.0054

2000 2016-07-15 0.1631 0.1590 0.1587 0.1591 0.0041 0.0045 0.0040

2020 2016-07-15 0.1568 0.1535 0.1531 0.1536 0.0033 0.0037 0.0032

2040 2016-07-15 0.1503 0.1477 0.1474 0.1478 0.0025 0.0028 0.0024

2060 2016-07-15 0.1435 0.1419 0.1418 0.1420 0.0016 0.0017 0.0015

2080 2016-07-15 0.1364 0.1361 0.1361 0.1361 0.0003 0.0003 0.0003

2100 2016-07-15 0.1298 0.1304 0.1304 0.1304 -0.0006 -0.0006 -0.0006

2120 2016-07-15 0.1226 0.1247 0.1246 0.1247 -0.0022 -0.0021 -0.0021

Note: Bias 1 = σmarket − σV V , Bias 2 = σmarket − σ1st, Bias 3 = σmarket − σ2nd.

Continued on next page
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Table 6 – continued from previous page

Strike Expiry σmarket σV V σ1st σ2nd Bias 1 Bias 2 Bias 3

2140 2016-07-15 0.1160 0.1190 0.1188 0.1189 -0.0031 -0.0029 -0.0030

1900 2016-08-19 0.1928 0.1831 0.1863 0.1826 0.0097 0.0065 0.0102

1920 2016-08-19 0.1877 0.1800 0.1816 0.1796 0.0077 0.0061 0.0081

1940 2016-08-19 0.1824 0.1763 0.1769 0.1761 0.0062 0.0056 0.0063

1960 2016-08-19 0.1769 0.1722 0.1721 0.1722 0.0047 0.0048 0.0047

1980 2016-08-19 0.1715 0.1677 0.1673 0.1678 0.0038 0.0042 0.0037

2000 2016-08-19 0.1660 0.1629 0.1625 0.1631 0.0031 0.0035 0.0029

2020 2016-08-19 0.1603 0.1580 0.1577 0.1581 0.0023 0.0026 0.0022

2040 2016-08-19 0.1541 0.1530 0.1528 0.1531 0.0011 0.0013 0.0010

2060 2016-08-19 0.1484 0.1480 0.1479 0.1481 0.0004 0.0005 0.0004

2080 2016-08-19 0.1429 0.1430 0.1430 0.1430 -0.0001 -0.0001 -0.0001

2100 2016-08-19 0.1367 0.1381 0.1381 0.1381 -0.0014 -0.0013 -0.0013

2120 2016-08-19 0.1307 0.1332 0.1331 0.1332 -0.0025 -0.0024 -0.0024

2140 2016-08-19 0.1247 0.1283 0.1282 0.1283 -0.0036 -0.0035 -0.0036

Note: Bias 1 = σmarket − σV V , Bias 2 = σmarket − σ1st, Bias 3 = σmarket − σ2nd.
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A Comparison of Volatility Smile

Note: the orange cross in each plot denotes observed market implied volatility.
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B Bias between Model Price and Market Price

Bias of Vanna Volga Implied Volatility
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C Risk-neutral Density
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D Compute Forward Price via Put-Call Parity

Pseudo Code

for each maturity T

% get the following data

- best-bid of call

- best-bid of put

- best-ask of call

- best-ask of put

% unique the strikes of call and put

- strikes

for each strike K

% compute the mean of bid and ask price of call and put

A = mean of best-bid of call option prices C(K,T )

B = mean of best-bid of put option prices P (K,T )

C = mean of best-ask of call option prices C(K,T )

D = mean of best-ask of put option prices P (K,T )

% compute the mid-price

mid-price = (A-B + C - D) / 2

optimize forward price by Put-Call parity C-P=PV·(F-K)

% optimize only for near-the-money strikes

near-the-money strikes

% initial guess of forward price F and present value PV

F.initial = mean (mid-price + strikes)

PV.initial = 1

% objective function for optimization

error =

(
PV · (F−K)−mid-price

)
· near-the-money strike

objective function = minimize
∑

(errors)2

% run optimization with these boundaries

Fmin= the minimum of strikes

Fmax= the maximum of strikes

PVmin= 0.5

PVmax=2
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