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a b s t r a c t

Algorithmic trading requires tuning hyperparameters to fit the time series data; however, it often
suffers from overfitting of data that can lead to loss of money in action. Further, only a few studies
discuss how to select trading exchange pairs and frequencies in response to the fitness of machine
learning models. To cope with these problems, we developed a log-distance path loss model (to
measure and reduce the overfitting in data modeling and determine exchange pairs and frequencies
effectively. We conducted several experiments for different metrics using several influential factors
such as machine learning models, learning objectives, trading strategies, and hyperparameter turning
cases to validate the proposed approach. The obtained results indicate that the proposed metric is
significantly superior to other methods in terms of accuracy, in-sample return (i.e., return of training
data), and F1-score. Thus, using our path loss metric to guide data modeling, we provide a method to
deal with the overfitting problem and yield positive trading returns.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Algorithmic trading has been a popular topic for many decades
wing to its many advantages over human trading including
igh speed and the ability to not be affected by emotions [1,2].
ost common algorithmic trading methods implement techni-
al analyses [3,4] which suggest indicators of long and short
trategies. However, the efficient-market hypothesis states that
echnical analysis is not helpful for making profits and it can
oncisely explain why it is very difficult to make money from
rading or making investments. In a foreign exchange market,
xchange quotes change promptly in response to rapidly updated
nformation; therefore, there is a need to develop a more effective
pproach.
Machine learning can induce rules by iteratively reducing gaps

etween predicted and actual values. Many machine-learning
ethods have been applied to FX applications; often, the fo-
us is on modeling performance that measures the accumulated
iscrepancy between the collected time series data and those pro-
uced by the inferred model over time [5,6]. Indeed, the objective
f trading is undoubtedly a return [7]. However, long and short
ositions have different returns, and trading needs to be stopped
hen the returns become negative. Furthermore, maximizing the
eturn could result in the algorithm (e.g., the model) fitting to the
oise of the data instead of the hidden patterns. Therefore, we
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568-4946/© 2021 Elsevier B.V. All rights reserved.
propose to convert the returns of long and short positions into
a single value for the predictive model; this will simultaneously
filter the spike return and retain the relative extent of the long
and short position returns.

In addition to the computational techniques, two important
issues need to be addressed in the data modeling process for
automated trading: The first issue is overfitting. The relevant
hyperparameters must be tuned repeatedly to fit the data to
a machine learning model for optimization [8–11]. The model
can overfit the training data, and consequently, the predictive
performance of the model declines when the inferred model is
applied to the test data [12,13]. Overfitting can be overcome using
a number of methods including the addition of the L1/L2 regu-
larization to the loss function [14,15] or of noise to the original
data during the optimization process [16]. This method involves
manually tuning the hyperparameters to eliminate noise; there is
still a requirement for a more efficient and effective method.

The second issue is identifying how to select a currency pair
and frequency that can couple with the data and the algorithm
to obtain the best performance. In previous studies, different
methods for time-series prediction performed well [6,17–20].
However, the obtained ‘‘model returns’’ only proved that the
model worked for some specific data frames selected for the
modeling. The trading frequency and currency pair need to be
assigned in advance [7,21]; however, there is no general rule to
determine the values for trading; we must depend on repeated
human trials. To the best of our knowledge, no research has
been published on choosing the appropriate trading FX pairs
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nd trading frequency that can work with the machine learning
lgorithm.
To resolve the above two issues, we develop a log-distance

ath loss model (hereafter, path loss) with an overfitting mea-
urement. Path loss has been widely used to measure signal loss
ithin environments [22,23]. In this study, we use the analogy
f different combinations of trading frequencies and currency
airs as the transmission environment and define a new path
oss metric to guide the data modeling. Path loss is required
o measure the log-distance between the normalized in-sample
eturn and the profitable ratio with accuracy as that of the ex-
onent. With these specially designed characteristics, our path
oss approach can help determine the trading frequency and cur-
ency pair to further distinguish less overfitting data from original
ata. That is, our approach can overcome the overfitting problem
nd simultaneously lead to more stable returns for algorithmic
rading.

We conducted several experiments that compared the pro-
osed path loss metric with several popular metrics (e.g., ac-
uracy, in-sample return, and F1-score) based on the following
earning objectives, two trading strategies, and four machine
earning models (neural networks, random forest, support vector
achine/support vector regression (SVM/SVR) and eXtreme gra-
ient boosting (XGBoost)) to verify the proposed approach. Our
esults prove that trading combinations that employ path loss as
he metric outperform those combinations that use metrics of
ccuracy and in-sample returns. We fine-tune hyperparameters
or the trading data (i.e., currency pair and trading frequency) se-
ected using metrics of path loss, accuracy, in-sample return, and
1-score to further enhance the trading performance. Our results
rove that the path loss metric can obtain positive returns when
oupled with the objective of regression and the trading strategy
f holding the position until switching. The process applied in this
tudy is illustrated in Fig. 1.

. Related work

Thus far, various methods have been proposed for algorithmic
rading. One of the simple methods for algorithmic trading is
time-series prediction. The principle is that if the predicted
ricet is higher than pricet−1, then the long position is taken and

vice versa. The popular methods employed for time-series predic-
tion include autoregression (AR), moving average (MA), and au-
toregressive integrated moving average (ARIMA) [24,25]. The AR
models the time-series data related to the previous data, and MA
removes the high-frequency noise. Further, ARIMA combines MA
and AR with stationary data; the autoregressive conditional het-
eroskedasticity model and generalized autoregressive conditional
heteroskedasticity are used to model the volatility of the time-
series data [26,27]. The above models are widely employed in
financial research to model data and verify that time-series data
are related to their own lagged values. Neural networks [28,29]
and SVM/SVR [30–32] have had tremendous success for nonlinear
data predictions; however, these have the problem of overfitting
in out-of-sample data trading.

In addition to a single computational model, ensemble learn-
ing provides a useful prediction alternative. It includes a group
of predictive models where the output is the synthesis of var-
ious models. In general, a group of models that work together
outperform single models. To date, ensemble learning has been
widely applied for predicting foreign exchange, and it has been
shown to work well [29,33–35]. In this research, we adopted
two ensemble machine learning methods (random forest and XG-
Boost) because they demonstrated good performances. XGBoost
has won several data competitions, and therefore, it is considered
a state-of-the-art method.
2

The selection of appropriate data features plays an important
role in data modeling. The technical indicator is composed of buy
and sell signals, and thus, it is widely used as a data feature for
different computational methods in the trading and investment.
Certain studies showed that technical indicators are positively
related to returns [3,21,36]; however, the transaction costs may
offset meager profits. From a machine learning perspective, a
return is a natural reward for reinforcement learning. Reinforce-
ment trading requires rewards, status, and actions for policy
training [21]. The status includes information for the algorithms
such as volume, price, or technical indicators; the actions of
reinforcement trading include long, short, and holding positions.

Overfitting and the selection of currency pairs and frequency
are two issues that need to be addressed in addition to computa-
tional techniques for performing algorithmic trading. Overfitting
refers to the fact that the model fits noise rather than the pat-
terns [37]. Bailey et al. [38] proposed a probability method to
measure overfitting quantitatively; however, their method re-
quires cross-validation to project probability when sequential
patterns are undermined. Harvey and Liu adopted the Sharpe
ratio, which is a metric that adjusts the return by its volatil-
ity to conduct statistical testing. A continuous positive return
results in an inferior Sharpe ratio performance that may not
result from overfitting [39]. Further, Carr and Prado introduced
a method to generate out-of-sample data by modeling financial
variables [40]. This implies that the measurement of overfitting
depends on the quality of the model. Out-of-sample returns is a
good measurement of overfitting that implies hyperparameters
were fine-tuned based on the out-of-sample return. Therefore,
these out-of-sample data are part of the in-sample data [41].
Other methods such as L1/L2 regularization and tree pruning can
avoid overfitting, but these methods still require considerable hu-
man effort to repeatedly tune the hyperparameters. The process
of fine-tuning hyperparameters involves selecting the best result
within a range of hyperparameters for SVM and XGBoost. For the
neural network and random forest, we trained a set of models
with different hyperparameters and selected the best one.

The selection of currency pairs and frequency is the second
issue with algorithmic trading. To resolve this issue, several pop-
ular metrics of in-sample performance including the root mean
squared error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), in-sample return, and accuracy can be
used for the selection [42]. In this study, we focus on trading;
therefore, reducing the RMSE, MAE, and MAPE will unnecessarily
lead to a positive return. Further, the return will be positive only
if the model predicts the right position (long/short). Therefore,
only accuracy, in-sample return, and F1-score are suitable for our
research. We adopted four metrics (accuracy, in-sample return,
F1-score, and a specially designed path loss model) to measure
in-sample performance. The path loss model is commonly used
to measure the signal loss caused by the environment.

path loss ∝ γ log(
d
d0

) (1)

Path loss is expressed as the log-distance of d divided by the
base distance d0, which is then multiplied by the exponential
factor γ . According to Eq. (1), we develop a new model that
can measure and overcome overfitting caused by noise. Further,
our model can select the most appropriate exchange pairs and
frequencies for trading.

3. Method

In this section, we present the proposed approach for au-
tomated trading and provide relevant details step-by-step. In
Section 3.1, we first define the returns of the long and short
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ositions and then use them as the basis to define the trading
bjectives from two perspectives: regression and classification.
e then describe the two trading strategies with different as-

umptions for various conditions. One strategy is to hold the
osition for one period, and the other is to hold the position until
witching. Both trading strategies take a long position and a short
osition based on the objectives. In Section 3.2, we define three
etrics that include accuracy, in-sample return, and path loss to
elect the trading currency pair and frequency. Using conditions
onfigured from the above factors, we depict the four machine-
earning models and the input features used in this research
n Section 3.3. In Section 3.4, we describe how the proposed
pproach is verified using a moving window.

.1. Objectives

.1.1. Returns of long/short positions
The return of long position (RLP) and return of short position

RSP) are respectively defined as

LPt+1,i,j ≡
Bid pricet+1,i,j

Ask pricet,i,j
− 1 (2)

RSPt+1,i,j ≡
Bid pricet,i,j

Ask pricet+1,i,j
− 1 (3)

where t refers to time; i refers to the currency pair (one of
he seven major trading currency pairs: AUD/USD, EUR/USD,
BP/USD, NZD/USD, USD/CAD, USD/CHF, and USD/JPY), and j
efers to trading frequency, which includes candidates ranging
rom ten min to one d. This results in 144 trading intraday
requencies. The bid price and ask price refer to the quotation of
he deal for buying and selling a currency, respectively. RLPs and
SPs are used to define the objective for the regression, profitable
atio, and trading strategy as follows:

.1.2. Objectives of the regression and classification models
Our automated trading strategy is to place orders on a given

requency; therefore, slippage has a neutral effect on returns. Fur-
her, most foreign exchange traders do not charge commissions,
nd in our data source (Dukascopy), only a meager commission
as charged. Therefore, the commission can be ignored and only
he spread is considered as the transaction cost.

To define the objective by simultaneously considering RSP,
LP, and the spread, we project them onto the same plan. In
ig. 2, the x-axis represents the RSP, and the y-axis represents

the RLP. Trading records located in Quadrant II and Quadrant IV
imply that the long position and the short position are profitable,
respectively. Further, another trading record located in Quadrant
III indicates that both long and short positions are unprofitable.
Thus, the objective of the regression is to learn the angle (±ω)
between the vector (1,1) and the vector of the long and short
position returns (i.e., ± in the figure); this is equated as

angle ≡ ω × S = cos−1(
a⃗ · b⃗
⃗|a| ⃗|b|

) × S (4)

where a⃗ = (1, 1), b⃗ = (RLP, RSP) and S = sign(RLP − RSP).
3

Fig. 2. Objective of the regression and classification model. For trading belonging
to the vector space constituted by RLP and RSP, the measurement of the angle
between the vector (1, 1) and the vector of RLP and RSP is defined as the
objective of regression. Further, the objective of classification is to correctly
classify data into three classes: Long , Short and Stop trading corresponding to
he intervals of angles 0 < ω < 3/4π , 0 > ω > −3/4π , and 3/4π < ω < 5/4π ,
espectively.

We designed the objective as a classification problem to max-
mize accuracy based on another perspective of algorithmic trad-
ng. Classes of FX trading with the classification
ere {Long, Short, Stop trading}, which corresponded to angles
0 < ω < 3/4π, 0 > ω > −3/4π, 3/4π < ω < 5/4π}

respectively. The trading cost is the spread of the bid and ask
prices in this research, and it differentiates the RLPs and RSPs.
The objectives of classification and regression models are both
composed of RLP and RSP, and this means the trading cost is
considered in the machine learning models.

3.1.3. Trading strategy
We adopted two trading strategies: holding position for one

period and holding position until switching. Both trading strate-
gies consider their own assumptions. The holding position for
one period assumes that all data are independent and identical
to the same distribution. The holding position until switching
involves taking the long/short/close position when the algorithm
recommends a position different from the previous one. Trading
is assumed to be a Markov decision process (MDP) because each
decision is conditioned on the previous position.

The first trading strategy (i.e., holding position for one period)
takes the position based on the objective defined in Eq. (5). That
is, if 0 < ω < 3/4π the strategy takes the long position with
RLPt,i,j; if −3/4π < ω < 0 the strategy takes the short position
with RSP ; and otherwise, no action is taken with Return = 0.
t,i,j t,i,j
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ransitional position matrix is the currency transiting from t1 to t, and it is
enoted as Transactioni,j(t − 1, t).

Longt Shortt Stopt

Longt−1 0 (Bid pricet,i,j)2

1
(Bid pricet,i,j)

1

Shortt−1
1

(Ask pricet,i,j)2
0 1

(Ask pricet,i,j)

Stopt−1
1

(Ask pricet,i,j)
(Bid pricet,i,j)

1 0

Returnt,i,j =

⎧⎨⎩
RLPt,i,j, if 0 < ωt,i,j < 3/4π
RSPt,i,j, if −3/4π < ωt,i,j < 0
0, otherwise

(5)

For this strategy, in-sample and out-of-sample returns are
accumulations of the compounded Returnt,i,j defined as

Returni,j =

n∏
t=1

(Returnt,i,j + 1) − 1 (6)

The second trading strategy – holding position until switching
– conforms to the MDP, and we list the transitional condition in
Eq. (7). For the position transitioning from t1 to t, if 0 < ω <

/4π , the strategy takes a long position; if −3/4pi < ω < 0,
he strategy takes a short position; otherwise, the holding posi-
ion is taken. Table 1 summarizes the transactions made while
ransitioning from positiont−1 to positiont . For this strategy, the
eturn of the holding position until switching is the product of the
ransactions, as defined in Eq. (8); all positions should be closed
t the end of trading.

ositiont,i,j =

⎧⎨⎩
Long Positiont,i,j, if 0 < ωt,i,j < 3/4π
Short Positiont,i,j, if −3/4π < ωt,i,j < 0
Holding Positiont,i,j, otherwise

(7)

Returni,j =

n∏
t=2

Transactioni,j(t − 1, t) − 1 (8)

Further, we include the buy-and-hold training strategy as the
baseline, and we assume that the trader has unlimited cash.
For other trading strategies, we assume the trader has a unit
of money in the beginning. When the return reaches −100%,
the trader loses all the money. In addition, we did not consider
leverage.

3.2. Selection of currency pair and trading frequency

We emphasize the importance of selecting trading data. In
this subsection, we describe how we develop and exploit a path
loss model as a metric to select the currency pair and trading
frequency that determine the most appropriate data for model-
ing. Further, the metrics of accuracy and in-sample return are
included as baselines for comparison. The metric of the in-sample
return is discussed in Eqs. (6) and (8). Here, we only depict
accuracy and path loss. With these metric definitions, we define
the corresponding rules for selecting currency pairs and trading
frequencies.

3.2.1. Accuracy
Accuracy is a popular metric for evaluating the performance

of a classification problem. Therefore, to measure the accuracy
of the regression model, we turn the prediction of regression
into categorical results. Table 2 lists the confusion matrix that
contrasts the predictive results with the ground truth in the
4

Table 2
Confusion matrix includes the ground truth and prediction of the long position
(Long), short position (Short), and stop trading (Stop).

Ground truth

Long Short Stop

Prediction
Long a1 a2 a3
Short a4 a5 a6
Stop a7 a8 a9

classification. Based on this matrix, the accuracy is defined as the
ratio of the sum of the diagonal entries to the sum of all entries.
Accuracy is a component of the path-loss model and it is given as

Accuracy =
a1 + a5 + a9∑9

i=1 ai
. (9)

where ai refers to the amount of prediction related to the ground
truth for each category.

3.2.2. Path loss
In our approach, we adopted the path loss concept from the

log-distance of the path loss model. Here, we consider trading
data as the medium and use the analogy of the overfitting phe-
nomenon for the path loss accumulated over the trading period.
We replace the terms γ , d0, and d used in the original model with
accuracy, profitable ratio, and normalized in-sample return, re-
spectively. First, we describe the profitable ratio and normalized
in-sample return, and then, we use these to define the path loss.

Different trading frequencies indicate different numbers of
transactions. If each transaction consumes or gains a small
amount of capital (e.g., 0.01%) for high-frequency trading, the
total capital can be lost or doubled during the period of data back-
testing (but not for low-frequency trading). Therefore, in-sample
returns should be normalized to the same scale. A normalized
in-sample return (NISR), which is a one-minute return, is defined
as

NISRi,j =
1440
√
(IS Returni,j + 1) (10)

The profitable ratio measures the proportion of price fluctua-
tions that cover the spread; this is defined as

# of profitable positioni,j =

n∑
t=1

max(RLPt,i,j, RSPt,i,j, 0)
max(RLPt,i,j, RSPt,i,j)

(11)

rofitable ratioi,j ≡
# of profitable positioni,j

n
(12)

If the profitable ratio is 1, the machine learning model must
earn only the sign of the objective. In other words, the data are
ot located in quadrant III, as indicated in Fig. 2.
A high NISR implies a high tendency for overfitting. Hence, the

ath loss measures the log distance between the NISR and the
rofitable ratio, and then, it multiplies by the accuracy. A low path
oss implies that the returns stem from patterns instead of noise.
high NISR implies a high tendency for overfitting. Therefore, our
ath loss model first measures the log-distance between the NISR
nd the profitable ratio. Subsequently, it multiplies this distance
ith accuracy. The overall model is defined by

ath lossi,j = accuracyi,jlog(
NISRi,j

profitable ratioi,j
) (13)

With this measurement, the trained models can overcome the
overfitting problem and simultaneously obtain better results.

In summary, the path loss factors into model performances
(accuracy and NISR), data characteristics (profitable ratio), and
the interaction of both (log of NISR divided by profitable ratio).
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.2.3. Selection of trading data
We adopted three metrics to measure in-sample performance:

ccuracy, in-sample return, and path loss. Accuracy measures the
orrectness of a model in classifying data into three classes: tak-
ng a long position, short position, or stopping trading. In-sample
eturns measure the compounded returns of the in-sample data.
ath loss measures the degree of model fitting to the noise. These
etrics are used to select the best currency pair and trading

requency through the processes indicated by

rg max
i,j

(accuracyi,j) (14)

arg max
i,j

(IS returni,j) (15)

rg min
i,j

(path lossi,j) (16)

here i and j represent the currency pair and trading frequency,
respectively. Currency pair i and trading frequency j obtained
from the data frame (Section 3.4) are the best choices for trading.
As shown in Eqs. (14)–(16), both the metrics of accuracy and in-
sample return require a maximum value; the path loss requires
a minimum value because it measures overfitting.

3.3. Training and testing of the machine learning model

Based on the above definitions and descriptions of the critical
factors in trading, we introduce the four machine learning models
and input features used to validate the metrics. In the evaluation,
the out-of-sample return was calculated using a moving window.

3.3.1. Data
For modeling and testing, we collected per-minute data from

Dukascopy [43] for the years 2007 to 2020. The data included
seven major trading currency pairs: AUD/USD, EUR/USD,
GBP/USD, NZD/USD, USD/CAD, USD/CHF, and USD/JPY.

3.3.2. Input features
The six input features used for our machine learning method

are the spreads, changes in bid prices, changes in ask prices,
differences in bid and ask volumes, volatility of bid prices, and
volatility of ask prices. These are defined as

SPt,i,j ≡ close price of bidt,i,j − close price of askt,i,j (17)

BPt,i,j ≡ close price of bidt,i,j − close price of bidt−1,i,j (18)

APt,i,j ≡ close price of askt,i,j − close price of askt−1,i,j (19)

BAVt,i,j ≡ volume of bidt,i,j − volume of askt,i,j (20)

BPt,i,j ≡ high price of bidt,i,j − low price of bidt,i,j (21)

APt,i,j ≡ high price of askt,i,j − low price of askt,i,j (22)

The spread (SP) is positively related to volume and negatively
elated to the effect of information [44]. The changes in the
id price and ask price imply trading initiated by the buyer or
eller [45,46]. Because volatility has been proved to be related
o returns [47], the volatility of the bid price and that of the ask
rice are included. The differences in the bid and ask volumes are
sed to measure the volume imbalance, which is related to price

luctuations [48].

5

3.3.3. Machine learning model
Four popular machine learning models are adopted for model-

ing in this study: SVM/SVR, random forest, XGBoost, and a neural
network. They are used to work with the objectives of regression
and classification. The performance of the modeling process is
further enhanced by fine-tuning the hyperparameters involved.
However, it is not practical to fine-tune all trading data (i.e., all
configurations of parameters related to critical factors defined in
the above sections) because it requires considerable human effort.

Our major focus is on the selection of trading currency pairs
and frequencies, and therefore, we only fine-tune the hyperpa-
rameters for the trading data selected by the metrics. Therefore,
trading is performed in two phases: determining the best hy-
perparameters and fine-tuning them. The determination of the
best hyperparameters is an inefficient and time-consuming pro-
cess because the combination of the currency pair and trading
frequency for each time period is 1008. Using the default setting
is a conservative approach to select currency pairs and trading
frequencies for the next step. We used the default settings of
the R library for the hyperparameters as follows: the kernel of
the SVM and SVR is the radial basis function, the tree number
for the random forest is 500, the maximum number of boosting
iterations for XGBoost is 5, and the dimensions of the three layers
of neural networks are (6,3,1) and (6,3,3) for regression and clas-
sification, respectively. We only fine-tuned the hyperparameters
for each currency pair and frequency selected with each metric
to train the model.

3.4. Moving window

The collected data were divided into 52 data frames to perform
modeling; each frame included in-sample and out-of-sample
data. The moving window technique was employed to access
the time-series data in sequence. All input data were scaled
using the mean and variance of the in-sample data. Further, the
machine learning models were trained using in-sample data with
input features and the objectives stated above (Sections 3.3.2
and 3.3.3). The in-sample returns are the compounded returns of
the in-sample data for a given set of currency pairs and trading
frequency. The 52 data frames represent the annual experimental
data (from January 2007 to September 2020); we used nine
months of data for training and the other three months for
testing.

Table 3 provides a walk-through example of using the moving-
window technique to perform trading. In this example, the XG-
Boost method is adopted to select the currency pair and trad-
ing frequency. We conducted trials for both types of objectives
(regression and classification), and the trading strategy of the
holding position for one period was used. The best results for
the metrics of accuracy, in-sample return, and path loss are
summarized in Table 3. For each case, the corresponding trading
frequency (i.e., the period in the table), currency pair, and out-of-
sample returns are listed. Further, the geometric average return
(i.e., ‘‘Geo. Avg.’’) are shown in the last row of the table. In this
example, geometric average returns obtained by the metric of
the path loss are better than those obtained by the metrics of
accuracy and in-sample return. Further, these results show that it
is possible to obtain a positive geometric average return by taking
the perspective of classification and using the path loss metric to
construct models. This is very important for algorithmic trading.

4. Results and discussions

We conducted a series of experiments to verify the proposed
approach and presented the results. We evaluated different com-
binations of the critical factors analyzed in Section 3 includ-

ing configurations of two learning objectives (regression and
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able 3
xample of XGBoost selecting currency pair and trading frequency (period) and its corresponding out-of-sample return. For the objective of regression and classification
ith the trading strategy of holding the position for one period, frequency (period) and currency pairs are selected using accuracy, in-sample return, and path loss.
he geometric return of the out-of-sample returns are shown.
Regression

Accuracy In-sample return Path loss

Accuracy
(Max)

Period
(Mins)

Currency
pair

Out-of-sample
return

In-sample
return (Max)

Period
(Mins)

Currency
pair

Out-of-sample
return

Path loss
(Min)

Period
(Mins)

Currency
pair

Out-of-sample
return

200701 85.20% 360 AUD/USD 19.07% 14100.65% 950 NZD/USD −52.88% 1.01E−04 1390 USD/JPY −8.45%
200704 91.34% 30 AUD/USD −88.40% 27280.73% 340 AUD/USD 1.45% 1.09E−04 1410 USD/JPY −28.85%
200707 89.87% 20 AUD/USD −93.76% 48196.25% 770 NZD/USD −29.25% 1.39E−04 1140 USD/JPY −24.87%
200710 87.47% 70 EUR/USD −55.93% 18031.95% 600 AUD/USD −18.16% 1.27E−04 1180 USD/JPY 50.86%

Geo.
Avg.

−75.17% −27.47% −7.31%

Classification

Accuracy In-sample return Path loss

Accuracy
(Max)

Period
(Mins)

Currency
pair

Out-of-sample
return

In-sample
return (Max)

Period
(Mins)

Currency
pair

Out-of-sample
return

Path loss
(Min)

Period
(Mins)

Currency
pair

Out-of-sample
return

200701 79.63% 710 AUD/USD 14.39% 15403.55% 600 NZD/USD −25.92% 9.52E−05 1390 USD/JPY 6.82%
200704 83.56% 150 AUD/USD −27.88% 36611.16% 280 AUD/USD −16.95% 1.14E−04 1410 USD/JPY −6.21%
200707 84.04% 240 AUD/USD −22.19% 76761.17% 190 AUD/USD −46.55% 1.44E−04 1140 USD/JPY −16.81%
200710 80.07% 850 AUD/USD −45.95% 37221.49% 250 AUD/USD −58.58% 1.38E−04 1180 USD/JPY 30.16%

Geo.
Avg.

−23.25% −39.25% 2.06%
classification), two trading strategies (holding position for one
period and holding position until switching), three metrics (in-
sample return, accuracy, and path loss) employed to select the
trading data (frequency and currency pair), and four machine
learning models (SVM/SVR, random forest, XGBoost, and neural
network) adopted for modeling. Further, we show a compari-
son of the results for the trials with and without fine-tuning
the hyperparameters. To observe variations in model behavior
during trading, we plot the cumulative out-of-sample returns
over time in Figs. 3–6. Table 4 summarizes the compounded
out-of-sample returns corresponding to Figs. 3–6. Further, the
results in green in Table 4 are positive, and those in red are
negative; those in bold text indicate the best in three metrics with
the same configuration of the model, trading strategy, objective,
and hyperparameter settings. We discuss the results from the
four perspectives of algorithmic trading to further investigate
the effects of different factors. These four perspectives include
the metrics, trading strategy, fine-tuning hyperparameters, and
machine learning model.

4.1. Performance of metrics in selecting trading currency pairs and
frequencies

We developed three metrics to select currency pairs and fre-
uencies for trading: path loss, accuracy, and in-sample return.
able 4 lists the compounded out-of-sample returns and the best
ut-of-sample returns among the three metrics presented in bold.
rom the metric evaluation perspective, these results confirm
hat path loss can deliver the best performance and is the best
etric. Further, in the experiments, the path loss metric can lead

o positive out-of-sample returns when used with the objective
f regression for the strategy of holding position until switching
nd fine-tuning hyperparameters. While considering algorithmic
rading as a regression or classification problem, path loss is
ound to be the best for both objectives. The path loss metric
utperforms other metrics because it considers the profitability of
he data (profitable ratio) and the fitness of the models (accuracy
nd NISR).

.2. Comparison of trading strategies

We conducted several sets of experiments and categorized

nd compared the results to evaluate the two trading strategies

6

Table 4
Compounded return for all combinations of trading strategies, machine learning
models, objectives, and without and with fine-tuning hyperparameters. The
returns in bold are the best cases among the three metrics. The details of
parentheses and conclusions are discussed in Sections 4.2 and 4.4, respectively.
Method Path loss

Regression Classification Regression Classification

Without fine-tuning Fine-tuning

NN −21.40% −44.62% −10.59% −54.40%
NN holding 38.03% 20.86% 29.39% 28.15%
RF 10.09% −28.54% 14.99% −43.25%
RF holding (−6.25%) −6.10% (11.15%) (−51.77%)
SV 56.94% −11.62% 49.28% −43.43%
SV holding 69.24% 17.00% 60.51% −32.20%
XG −48.66% 15.19% −5.25% −51.62%
XG holding −39.33% 15.60% 28.92% −36.48%

Accuracy

NN −48.26% −68.69% −41.58% −72.26%
NN holding 16.57% −2.01% −9.00% −35.13%
RF −37.24% −100.00% −41.36% −100.00%
RF holding (−39.57%) −99.99% −29.26% −100.00%
SV −55.21% −48.19% −55.40% −52.36%
SV holding −44.37% −21.36% −44.34% −32.82%
XG −100.00% −97.58% −100.00% −97.95%
XG holding −99.61% −77.22% −99.99% −85.15%

In-sample return

NN −71.20% −67.12% −71.50% −69.90%
NN holding −10.56% −49.33% −9.75% −48.32%
RF −100.00% −57.21% −100.00% −75.26%
RF holding −100.00% −22.85% −100.00% −57.34%
SV −71.06% −58.72% −73.85% −72.87%
SV holding (−77.21%) −28.98% (−77.66%) −56.80%
XG −93.01% −97.72% −88.35% −97.68%
XG holding −86.16% −92.63% −73.09% −95.38%

(i.e., holding position for one period and holding position until
switching). Figs. 3–6 present the results obtained for the four
machine learning methods. Figs. 3–6(a) and (c) show the re-
sults (without and with fine-tuning hyperparameters) for the first
strategy (i.e., the holding position for one period), and (b) and (d)
show the results for the second strategy (i.e., the holding position
until the switching). The compound returns are summarized in
Table 4 as indicated by the four learning methods without or
with the ‘‘holding’’. The strategy of the holding position until
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Fig. 3. SVM/SVR out-of-sample cumulative return with treatments of trading strategies, machine learning model, objective, and fine-tune hyperparameters. The metric
of path loss can lead to positive return in (d), which also holds across all machine learning models.
switching is better than the strategy of the holding position for
one period, excluding the seven cases labeled with parentheses.
These comparisons suggest that FX trading should be conditioned
on the previous position and conform to the MDP to obtain better
results.

4.3. Effect of fine-tuning hyperparameters

We applied hyperparameters to the data specified by selecting
he trading currency pair and frequency to investigate the ef-
ect of fine-tuning the hyperparameters. From the out-of-sample
esults listed in Table 4 (under the columns of without and
ith fine-tuning), we observe that only the trials configured
y the metric of path loss and the objective of regression can
ead to more positive returns after fine-tuning hyperparameters.
ll returns obtained with the other configurations are degraded
fter fine-tuning the hyperparameters. Comparison of the cumu-
ative returns over time for trials with and without fine-tuning
yperparameters is shown in Figs. 3–6 (which corresponds to
he four learning methods). For illustrative purposes, (a) and (b)
epresent variations in the cumulative returns for trading without
ine-tuning, and (c) and (d) represent these variations with fine-
uning. As indicated, fine-tuning hyperparameters only works for
onfigurations that use the metric of path loss and the objective
f regression.
The path loss outperforms other metrics because it identifies

rading frequency and currency pairs that are less likely to be
ffected by overfitting. Furthermore, the objective of regression
ontains the relative extent of long and short position returns,
ut the objective of classification does not. Therefore, fine-tuning
7

parameters for the objective of regression enables the model to
learn more information from the data.

4.4. Evaluation of machine learning models

The results listed in Table 4 show that none of the four ma-
chine learning models adopted can outperform the others in all
scenarios. Some popular models (the ensemble learning methods
of random forest and XGboost) produced an out-of-sample return
of 100% when they were used with the metrics of accuracy and
in-sample return. However, all learning models with the configu-
ration of the metric of path loss, the objective of regression, and
the trading strategy of holding until switching produce positive
out-of-sample returns, which shows the generality and stabil-
ity of the specific configuration on different machine learning
models.

5. Further analysis

This study presents the returns of a linear model and a buy-
and-hold trading strategy under the configuration of currency
pair EUR/USD and trading frequency of 10 min to investigate
whether a simple model can surpass our proposed method. To
demonstrate the performance of popular approaches to deal with
overfitting, a set of experiments was conducted wherein the
neural network model was employed with L1/L2 regularization
and dropout. Further, the mean and median of the losses of the in-
sample and out-of-sample data are listed to observe whether the
low difference between the in-sample and out-of-sample losses
implies a low overfitting and a positive out-of-sample return.
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Fig. 4. XGBoost out-of-sample cumulative return with treatments for trading strategies, machine learning model, objective, and fine-tuned hyperparameters. The
etric of path loss can lead to positive return in (d), which also holds across all machine learning models.
.1. Baselines

As baselines, this study adopted the most common currency
air ERU/USD with a trading frequency of 10 min to perform a
aive buy-and-hold trading strategy and a linear model to learn
he six features. Popular measures such as L1/L2 regularization
nd dropout were employed to deal with overfitting. The results
n Fig. 7 show that the out-of-sample returns of the linear model
onverged to 100% and the neural networks of the regression
odel and classification model with L1/ L2 regularization and
ropout. Although the buy-and-hold trading strategy suffered a
inor loss, it required the assumption of unlimited capital that
as not in line with the two trading strategies of this study.

.2. F1-score

The F1-score is the harmonic of precision and recall, which is a
ore objective metric than accuracy. Table 5 presents the results
f the F1-score and the path loss with the F1-score (to replace the
riginal accuracy). The performance metric can obtain better out-
f-sample returns using the F1-score instead of using in-sample
eturns and accuracy; five positive returns are obtained (Table 5).
ompared with the path loss with accuracy, the path loss with
he F1-score had the same number of positive returns for the
onfiguration without fine-tuning the hyperparameters, whereas
he path loss with the F1-score underperformed the path loss
ith the accuracy for configuring fine-tuning hyperparameters.
he F1-score is a good metric; however, the path loss with accu-
acy is better than the F1-score in terms of the configuration of
ine-tuning the hyperparameters. According to the result that the
8

Table 5
Compounded returns of the path loss with the F1-score and of the F1-score.
Method Path loss with F1-score

Regres. Classi. Regres. Classi.

Without fine-tuning Fine-tuning

NN 6.72% −14.12% −15.94% −21.09%
NN holding −16.45% −21.43% −16.14% −4.71%
RF −9.68% −11.62% −15.98% −12.33%
RF holding −18.82% 16.43% −15.94% −50.91%
SV 41.84% −12.12% 34.91% −45.20%
SV holding 66.57% 17.00% 57.99% −32.21%
XG −12.80% 33.86% −6.14% 14.15%
XG holding 1.13% 51.32% 38.22% 18.84%

F1-score

NN −0.34% −59.42% −22.88% −49.23%
NN holding −20.70% −8.39% −17.42% −28.05%
RF −29.88% −100.00% −49.78% −100.00%
RF holding −23.03% −100.00% −29.80% −100.00%
SV −58.13% −13.92% −58.73% −6.01%
SV holding −46.95% 39.79% −46.93% 51.25%
XG −31.31% 61.70% −64.08% 7.81%
XG holding −6.48% 66.49% −34.01% −7.69%

number of positive returns obtained using accuracy (in Table 4)
is smaller than those obtained using the F1-score (in Table 5),
the accuracy is confirmed to be more susceptible to overfitting
than the F1-score. The path loss is designed to measure the
overfitting; the minimization of accuracy in the path loss metric
is to employed to minimize the chance of overfitting. Therefore,
the path loss with accuracy is a better choice than that with the
F1-score.
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Fig. 5. Random forest out-of-sample cumulative return with treatments of trading strategies, machine learning model, objective, and fine-tuned hyperparameters.
he metric of path loss can lead to positive return in (d), which also holds across all machine learning models.
.3. Loss between in-sample and out-of-sample data

The trick to stopping early is based on the assumption that the
odel learns some patterns that are not included in the validation
ata when the validation loss is higher than the training loss. The
ow difference between the in-sample loss and out-of-sample loss
mplies a low chance of overfitting. Table 6 shows the means and
edians of the in-sample and out-of-sample losses obtained by

he neural network and XGBoost models with the trading strategy
f holding the position until switching. The lowest difference
etween the in-sample and out-of-sample was based on accu-
acy; however, it did not have a positive out-of-sample return,
xcluding one case where neural networks were used for the
bjective of regression. Further, the path loss had the lowest out-
f-sample loss because it can select trading data with a high
rofitable ratio. Thus, the data included relatively fewer stop
ositions. In other words, the data contained more long and short
ositions, which means that trading data are easier to manipulate
han those with low profitability ratios. The path loss metric is
omposed of the performance of the model and the profitability
f data. Therefore, the path loss metric can select a model that
as truly learned the data patterns. The assumption of stopping
arly did not lead to a positive out-of-sample return. For random
orest and SVM, neither packages in R provided support to output
he out-of-sample loss. The training of the random forest model
onsiders the out-of-bag error, which is similar to the out-of-
ample data. Therefore, the results of the random forest were the
inimum in-the-bag error and out-of-bag error.
9

5.4. Rationale for using the metric of path loss

The highest trading frequency in our research was 10 min,
and therefore, the normalized in-sample return must be close to
1. The log function can measure the distance between the nor-
malized in-sample return and profitable ratio. A low log-distance
implies a low chance of overfitting because high in-sample re-
turns likely result in loss of out-of-sample data, as summarized
in Table 4. Under the same condition of the log-distance, the low
accuracy implies a low probability of overfitting because Table 4
indicates that high accuracy leads to negative out-of-sample re-
turns. For example, consider two cases with similar profitable
ratios of 99%, normalized in-sample returns of 102% and 101%,
and similar accuracies of 97%, respectively. Here, the latter case
of the trading frequency and currency pair is selected because
the lower log-distance is less likely to be over-fitted. As another
example, consider two other cases with profitable ratios of 99%,
normalized in-sample returns of 102%, and accuracies of 96% and
97%, respectively. Here, the former case of trading frequency and
currency pairs is selected because the lower accuracy with the
same log-distance is less likely to be over-fitted.

6. Conclusion

In this study, we focused on the importance of algorithmic
trading and developed a log-distance path loss model as a metric
to work with other influential factors for data modeling. The
specific characteristics of the path loss model allow the met-
ric to measure the performance affected by data noise and to
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Fig. 6. Neural network out-of-sample cumulative return with treatments of trading strategies, machine learning model, objective, and fine-tuned hyperparameters.

he metric of path loss can lead to positive return in (d), which holds across all machine learning models.
Fig. 7. Four baselines of buy-and-hold trading strategy, linear model, and
neural network with L1/L2 regularization and dropout with regression, and a
classification model.

derive a trading model that can overcome the overfitting prob-
lem. Further, the path loss metric was used to select trading
exchange pairs and frequencies to maximize profit. Our exper-
imental results demonstrated that the trading strategy of the
10
holding position until switching was better than that of the
holding position for one period, which indicates that FX trading is
an MDP. Trials conducted for trading with specific configurations
of the metric of path loss, objective of regression, strategy of
holding position until switching, and fine-tuned hyperparam-
eters can lead to positive out-of-sample returns regardless of
the machine learning method employed. These results confirmed
the effectiveness and efficiency of the proposed approach. The
practitioners can pick up trading data with specific currency pairs
and frequencies to fine-tune the model, and this can lead to a
positive out-of-sample return.
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Table 6
Comparison of in-sample loss and out-of-sample loss of Neural network and XGBoost with holding position trading
strategy.
Neural network

Method Regression

In-sample Out-of-sample In-sample Out-of-sample Profitable ratio

Mean Median Mean Median

Return 2.763 11.430 2.751 3.051 97.39% 97.43%
Accuracy 2.915 2.971 2.846 2.969 96.49% 96.83%
F1-score 2.544 3.027 2.504 2.863 98.86% 99.05%
Path loss (Accuracy) 2.648 2.755 2.610 2.747 99.39% 100%
Path loss (F1-score) 2.591 2.722 2.582 2.739 100% 100%

Classification

Return 0.7791 0.8750 0.7710 0.8595 97.08% 97.44%
Accuracy 0.7932 0.8274 0.7939 0.8282 97.05% 97.42%
F1-score 0.7288 0.8299 0.7256 0.8235 98.38% 98.52%
Path loss (Accuracy) 0.7024 0.7603 0.6864 0.7348 98.77% 100%
Path loss (F1-score) 0.7006 0.7617 0.6953 0.7473 100% 100%

XGBoost

Regression

Return 1.431 1.862 1.449 1.867 94.65% 95.19%
Accuracy 1.944 1.994 1.909 1.973 84.01% 86.55%
F1-score 0.8988 1.809 0.9084 1.809 99.45% 99.51%
Path loss (Accuracy) 1.1190 1.759 1.1230 1.742 100% 100%
Path loss (F1-score) 1.1575 1.737 1.1588 1.723 100% 100%

Classification

Return 0.2819 0.5455 0.2894 0.5452 91.30% 91.81%
Accuracy 0.3214 0.5238 0.3242 0.5302 94.57% 95.48%
F1-score 0.02834 0.4981 0.02985 0.5035 98.18% 98.58%
Path loss (Accuracy) 0.12604 0.4928 0.12997 0.4893 100% 100%
Path loss (F1-score) 0.13191 0.4892 0.12978 0.4870 100% 100%
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