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This paper develops the optimal causal path algorithm and applies it within a fully-fledged sta-
tistical arbitrage framework to minute-by-minute data of the S&P 500 constituents from 1998 to
2015. Specifically, the algorithm efficiently determines the optimal non-linear mapping and the cor-
responding lead–lag structure between two time series. Afterwards, this study explores the use of
optimal causal paths as a means for identifying promising stock pairs and for generating buy and
sell signals. For this purpose, the established trading strategy exploits information about the leading
stock to predict future returns of the following stock. The value-add of the proposed framework is
assessed by benchmarking it with variants relying on classic similarity measures and a buy-and-hold
investment in the S&P 500 index. In the empirical back-testing study, the trading algorithm gener-
ates statistically and economically significant returns of 54.98% p.a. and an annualized Sharpe ratio
of 3.57 after transaction costs. Returns are well superior to the benchmark approaches and do not
load on any common sources of systematic risk. The strategy outperforms in the context of cryp-
tocurrencies even in recent times due to the fact that stock returns contain substantial information
about the future bitcoin returns.

Keywords: Finance; Optimal causal path; Statistical arbitrage; Lead–lag structure; High-frequency
trading; Cryptocurrency

JEL classification: C1, C5, C6, G1, G12

1. Introduction

Statistical arbitrage pairs trading is a market neutral strategy
which has been developed by a group of quantitative analysts
at Morgan Stanley in the mid-1980s (Vidyamurthy 2004). Fol-
lowing Gatev et al. (2006), the approach identifies pairs of
stocks that show a strong relationship over a historical time
period. In case of temporary anomaly, an arbitrageur goes
long in the undervalued stock and goes short in the overval-
ued stock. If history repeats itself, prices converge to their
long-term equilibrium and a profit is drawn.

The majority of literature uses classic similarity measures
for finding co-moving securities (see Gatev et al. 2006, Do
and Faff 2010, 2012, Huck and Afawubo 2015, Rad et
al. 2016, and Stübinger and Endres 2018). Specifically, these
studies quantify the similarity between two time series x =
(x(1), . . . , x(N)) ∈ R

N and y = (y(1), . . . , y(N)) ∈ R
N by the

distance

d(x, y) =
N∑

i=1

d(x(i), y(i)), (1)

*Corresponding author. Email: johannes.stuebinger@fau.de

where d(x(i), y(i)) describes the distance at fixed time i
(i ∈ {1, . . . , N}). By construction, the measure outlined in
equation (1) is very sensitive to misalignments and time shifts
(Ding et al. 2008). This drawback is eliminated by introduc-
ing a model that permits an elastic adjustment of the time
axis in order to identify sequences that are similar but out of
phase. For this purpose, the co-moving between the sequences
x = (x(1), . . . , x(N)) ∈ R

N and y = (y(1), . . . , y(M )) ∈ R
M

is specified by

c(x, y) =
I∑

i=1

c(x(ni), y(mi)), (2)

where c describes the local cost measure and I ∈
{max(N , M ), . . . , N +M − 1}. The concept of dynamic time
warping provides an efficient technique for finding the most
suitable non-linear mapping by minimizing the measure
depicted in equation (2). In stark contrast to classic similar-
ity measures, this method is in a position both to handle time
series with different lengths and to be robust against amplitude
change, migration, and noise of time series (Wang et al. 2012).

Due to its superior flexibility, dynamic time warping
is applied in a wide range of research areas. Originally,
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it is used within the framework of spoken word recog-
nition, i.e. the technique eliminates non-linear time shifts
between two speech patterns caused by different speak-
ing rates (Juang 1984, Rath and Manmatha 2003, Muda et
al. 2010). In recent times, dynamic time warping is especially
utilized in gesture recognition (Arici et al. 2014, Cheng et
al. 2016), chemistry (Jiao et al. 2014, Dupas et al. 2015),
and medicine (Rakthanmanon et al. 2012, Fu et al. 2017).
Surprisingly, there exist only two academic studies in the
context of statistical arbitrage trading. Chinthalapati (2012)
adds a curvature energy term to the existing method and
employs it to intraday-data of 97 selected stocks from NYSE
on January 1st, 2006. Notably, the proposed directional trad-
ing represents no statistical arbitrage strategy in the sense of
Avellaneda and Lee (2010). Kim and Heo (2017) use dynamic
time warping for detecting similar patterns on daily prices
of the KOSPI 100 index stocks from January 2005 to June
2015.

This paper enhances the existing research in several
aspects. First, the manuscript contributes to the literature by
introducing the optimal causal path algorithm, which deter-
mines the most suitable lag between two time series using
a parameter-free procedure. The performance of the 3-step
algorithm is demonstrated with the aid of a simulation study.
Second, the essay develops a fully-fledged statistical arbi-
trage framework based on optimal causal paths. Top pairs
are selected possessing the most stable lead–lag structure
during the formation period. In the out-of-sample trading
period, information about the returns of the leading stock are
exploited to predict the future returns of the following stock.
Third, the value-add of the proposed trading framework is
assessed by benchmarking it with well-known quantitative
strategies in the same area of research. Specifically, the paper
considers statistical arbitrage trading variants on the basis of
correlation, Manhattan distance, and lagged cross-correlation
as well as an S&P 500 long-only benchmark. Fourth, this
article presents the first academic contribution applying a
large-scale empirical study of a sophisticated back-testing
framework on minute-by-minute data of the S&P 500 con-
stituents from January 1998 to December 2015. The strategy
generates statistically and economically significant returns of
54.98% p.a. after transaction costs. The results are far supe-
rior in comparison to the benchmarks ranging from 2.19%
for a naive buy-and-hold investment in the S&P 500 index
to 33.72% for the algorithm adapted from lagged cross-
correlation. Fifth, the manuscript proves the strategy’s prof-
itability in the context of cryptocurrencies in the sample
period from 2012 to 2015. A deep-dive analysis shows that
stock returns include substantial information about the bit-
coin returns in the future. This result posits a severe challenge
to the semi-strong form of market efficiency even in recent
times.

The paper is organized as follows. In Section 2, a
detailed description of the theoretical concept is provided.
Section 3 introduces the optimal causal path algorithm
and conducts a simulation study. Section 4 specifies the
study design of the back-testing framework. Empirical
results and key findings are presented in Section 5. Finally,
Section 6 concludes and provides suggestions for further
research.

2. Theoretical concept

The concept of dynamic time warping aims at iden-
tifying the relation structure of two given time series
x = (x(1), . . . , x(N)) ∈ R

N and y = (y(1), . . . , y(M )) ∈ R
M .

The underlying non-linear alignment between two tempo-
ral sequences is described with the aid of warping paths.
Following Keogh and Ratanamahatana (2005), a sequence
of points p = (p1, . . . , pI) with pi = (ni, mi) ∈ {1, . . . , N} ×
{1, . . . , M } for i ∈ {1, . . . , I} (I ∈ {max(N , M ), . . . , N +M −
1}) is called warping path if the following three properties are
satisfied:

(i) Boundary condition: p1 = (1, 1) and pI = (N , M ).
(ii) Monotonicity condition: n1 ≤ n2 ≤ · · · ≤ nI and m1 ≤

m2 ≤ · · · ≤ mI .
(iii) Step size condition: pi+1 − pi ∈ {(1, 0), (0, 1), (1, 1)},
∀i ∈ {1, . . . , I − 1}.

It should be noted that the step size condition implies the
monotonicity condition, which nonetheless is indicated for
the sake of clarity. Let P be the set of all possible warping
paths between the input time series x and y. The total cost of
a warping path p (p ∈ P) is defined by

cp(x, y) =
I∑

i=1

c(x(ni), y(mi)), (3)

where c describes the local cost measure. As such,
cp(x, y) characterizes the sum of differences between
the realizations of x at time ni and y at time mi

(i ∈ {1, . . . , I}). Typically, the cost measure is based
on the absolute distance (Müller 2007, Li and Clif-
ford 2012, Zhang et al. 2012) or the squared distance (Vlachos
et al. 2002, Senin 2008, Coelho 2012). The optimal warping
path p∗ between x and y depicts the lowest total cost among
all possible warping paths:

p∗ = arg min
p∈P

cp(x, y).

Calculating the total cost cp(x, y) for all possible warping
paths p ∈ P would yield to a complexity of the exponential
order. Therefore, the optimal warping path p∗ is determined
using dynamic programming, i.e. the underlying problem is
divided into sub-problems. The corresponding solutions are
stored for future reference leading to a lower time complexity
O(NM ). The total cost of p∗ is defined as cp∗(x, y), i.e. the sum
of all local costs of p∗. Figure 1 illustrates the local costs and
the identified optimal warping path p∗ given two time series.
Graphically, the sequence of points p∗ runs along a ‘valley’
of low cost (light colors) and avoids ‘mountains’ of high cost
(dark color).

In addition to the three conditions outlined above, academic
research introduces global and local conditions on the warping
path with the main purpose of speeding up the computational
run time. Global constraints aim at limiting the deviation of
a warping path from the diagonal—key representatives are
given by the Sakoe–Chiba band (Sakoe and Chiba 1978) and
the Itakura parallelogram (Itakura 1975) (see figure 2). Local
constraints modify the step size condition by altering the set
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Figure 1. Local costs of two time series and the corresponding opti-
mal warping path p∗ (solid line). Regions of high cost (low cost) are
indicated by dark colors (light colors).

of steps or favoring specific step directions (see Myers et
al. 1980, Myers and Rabiner 1981, Rabiner and Juang 1993,
and Berndt and Clifford 1994). Nonetheless, this manuscript
avoids any restrictions on the warping path because global
and local constraints both imply further parameter settings and
generate insufficient results in the vast majority of domains
(see Salvador and Chan 2007).

Nowadays, research studies either focus on optimizing the
run time of dynamic time warping or center the development
of a generalized model framework. Across all contributions,
the setting of model parameters takes a central part—the
criticism of arbitrariness and data snooping is omnipresent.

In the context of optimization, Keogh and Pazzani (2000)
introduce a modification of dynamic time warping that
exploits a higher level representation of time series data.
Müller et al. (2006) and Salvador and Chan (2007) recur-
sively project an alignment path computed at a coarse res-
olution level to the next higher level and then to refine the
projected path. Al-Naymat et al. (2009) dynamically utilize
the possible existence of inherent similarity and correlation

between two time series. Prätzlich et al. (2016) introduce a
memory-restricted alignment procedure that combines con-
cepts from Müller et al. (2006) with the idea of using rectan-
gular local constraint regions. Silva and Batista (2016) apply
an upper bound estimation to prune unpromising warping
alignments.

In the context of generalization, Sornette and Zhou (2005)
generalize the optimal search by adding a Boltzmann factor
proportional to the exponential of the global mismatch of this
path. Zhou and Sornette (2006) test the introduced methodol-
ogy on the dynamical time evolution of the lead–lag structure
between two arbitrary time series. Meng et al. (2017) present
a symmetric variant to determine the time-dependent lead–lag
relation.

3. Optimal causal path algorithm

3.1. Methodology

This section presents a non-parametric approach, called ‘opti-
mal causal path algorithm’, which determines the optimal
causal path and its corresponding lead–lag relation given two
time series x ∈ R

N and y ∈ R
M . Without loss of generality,

the description assumes N ≥ M .
Step A determines the optimal causal path under the

assumption of a constant lead–lag structure, i.e. the time series
exhibit a fixed lag. First, a loop measures the total costs of the
causal paths supposing lag l (l ∈ {0, . . . , M − 1}). In case of
N =M, the starting value l=0 results in the well-known Man-
hattan distance. Each statement defines the considered causal
path (n, m), where

n = (1, . . . , 1︸ ︷︷ ︸
Rl

, 1, . . . , N︸ ︷︷ ︸
RN

) ∈ R
N+l and

m = (1, . . . , M︸ ︷︷ ︸
RM

, M , . . . , M︸ ︷︷ ︸
Rl

, M , . . . , M︸ ︷︷ ︸
RN−M

) ∈ R
N+l.

To visualize this, the sequence of points represents a diagonal
shifted by the number of lags l and connected with the corners
(1, 1) and (N , M ). The function evalA quantifies the total cost
of the causal path (n, m). Second, the algorithm ascertains the
lag l∗ indicating the lowest total cost of all regarded causal
paths with a constant lead–lag structure. The associated causal
path (n1, m1) provides the initial setting for step B.

Figure 2. Sakoe–Chiba band (left) and Itakura parallelogram (right).
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Figure 3. The possible forms of the current local path (first row) and its alternative local path (second row).

Step B specifies the optimal causal path permitting a vary-
ing lead–lag structure. To this end, a loop gradually extends
the causal path with the aim of reducing overall costs. In each
iteration step, the function evalB arranges the unrestricted ele-
ments of the current causal path (nh−1, mh−1) in descending
order (h ≥ 2). Then, evalB examines successively whether the
fixed element in combination with its neighborhood repre-
sents a local optimal path. Figure 3 shows the five possible
forms of the current local path, which consists of the consid-
ered fixed element and its predecessor and successor. For each
current local path, there is an alternative local path, where
predecessor and successor are identical to the current local
path (see figure 3). It should be mentioned that variant 5
possesses two alternative local paths. The algorithm calcu-
lates and compares the costs of the current local path and
the alternative local path. If the alternative local path is less
expensive than the current local path, the new sequence of
points replaces the existing ones. The loop ends when the
updated path (nh, mh) is equal to the current path (nh−1, mh−1).
This procedure guarantees that the algorithm provides the
optimal causal path.

Step C determines the most suitable lag by calculating the
arithmetic mean of all differences between the indices of
the optimal causal path. The fluctuation around the optimal
lag is defined as the corresponding standard deviation. The
algorithm returns both the estimated lag and the appropriated
deviation of the optimal causal path.

3.2. Simulation study

In this section, a simulation study with synthetic data is car-
ried out in order to validate the optimal causal path algorithm.
Following Sornette and Zhou (2005) and Zhou and Sor-
nette (2006), two stationary time series X = (Xt)t∈{1,...,N} and
Y = (Yt)t∈{1,...,N} are constructed under the assumption that
X leads Y by time lag l (l ∈ N0). Mathematically, the lead-
ing time series X is defined by the following autoregressive
process:

X (t) = bX (t − 1)+ ν(t),

where b < 1 and ν(t)
i.i.d.∼ N (0, σ 2

X ). The stochastic process Y
is given by

Y(t) = aX (t − l)+ ε(t),

where a ∈ R and ε(t)
i.i.d.∼ N (0, σ 2

Y ). The parameter f =
σ 2

Y /σ 2
X specifies the amount of noise diminishing the depen-

dence between X and Y .
The baseline parameter setting follows Sornette and

Zhou (2005) and Zhou and Sornette (2006), i.e. we set
N =100, l=5, a=0.8, b=0.7, σ 2

X = 1, and f =1. Further-
more, this manuscript defines the local cost measure c as the
absolute difference between x(ni) and y(mi) (i ∈ {1, . . . , I}),
see equation (3). We vary ceteris paribus the sample size N,
the coefficient a, and the amount of noise f —the other con-
ditions remain the same since they do not directly affect the
dependency between both time series. Then, Algorithm 1 is
used to identify the optimal causal path, to estimate the lead–
lag structure, and to calculate the corresponding total cost.
Following McFadden and Train (2000), Ilzetzki et al. (2013),
and Létourneau and Stentoft (2014), 1,000 repetitions for each
parameter constellation are conducted. Figure 4 portrays the
resulting boxplots of the average total costs cp∗(x, y) (left col-
umn) and the estimated lags l̂ (right column) for varying the
parameters N, a, and f.

First of all, we observe that an increasing sample size N
leads to lower average total costs cp∗(x, y)—this fact is not
surprising since the percentage of data pairs with lag l grows.
Simultaneously, total range and interquartile range decrease
close to zero indicating robustness and prediction accuracy.
As expected, the estimated lag converges to the true value,
e.g. l̂ and l are identical in more than 97.5% of all cases for
N =50.

Furthermore, the average total costs cp∗(x, y) decline for
ascending parameter a due to the fact that the dependency
between both time series gets stronger. Notably, the hit ratio
of the estimated lag, i.e. the percentage with identical l̂ and l,
is above 90% even for a low-mid value of a=0.4. We observe
a symmetric boxplot in case of a=0 because this parameter
constellation implies no direct relation between x and y.

Finally, augmenting f causes rising average total costs
cp∗(x, y) with larger differences between maximum and mini-
mum as well as upper and lower quartile. If σ 2

X and σ 2
Y are at

a similar level, we find high precision of the estimated lags.
An increasing amount of noise provokes that the median of
the estimated lags l̂ converges to zero and the corresponding
ranges widen out.

Summarizing, the optimal causal path algorithm shows
strong performance in the vast majority of parameter constel-
lations with respect to robustness, efficiency, and feasibility.
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Figure 4. Boxplots of the average total costs cp∗(x, y) (left column) and estimated lags l̂ (right column) for varying the length of the time
series N (first row), the coefficient a (second row), and the amount of noise f (third row).

3.3. Handling noisy data

Naturally, economic time series, especially high-frequency
data, have a high level of noise (Zhang et al. 2005, Aït-Sahalia
et al. 2012, Aït-Sahalia and Xiu 2017). If the informative
structure and wrong patterns are not properly separated, this
leads to wrong conclusions and inaccurate predictions. Sor-
nette and Zhou (2005) provide an approach that introduces
probabilities (Boltzmann coefficient) and determines the opti-
mal thermal causal path by estimating the expected path. The
parameter T controls how much deviation from the minimum
energy is permissible. According to Sornette and Zhou (2005)
and Zhou and Sornette (2006), there is always a compro-
mise between not extracting the spurious noise (too low T)
and washing out too much relevant information (too high T).
The algorithm described in Section 3.1 nullifies the spurious

causal relations in a noisy data set by performing a 3-step
procedure. Step A filters temporary noise out of the data
by considering robust lead–lag structures. Step B focuses on
minimizing overall costs and is therefore regarded as a conser-
vative approach. Step C, on the other hand, screens the noise
from the available data by applying the average method. In
summary, the optimal causal path is determined by a compro-
mise between deleting too much relevant information and not
eliminating the spurious noise.

The performance of the presented algorithm is demon-
strated using a simulation study with synthetic data
(Section 3.2). We observe a strong performance in most
parameter constellations with regard to efficiency and feasi-
bility. Robustness and prediction accuracy are maintained at
high noise levels.
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Algorithm 1 Optimal causal path algorithm

Input: Time series x ∈ R
N and y ∈ R

M (N ≥ M ) as well as
local cost measure

Output: The optimal causal path, the corresponding estimated
lag,

and the fluctuation of the unrestricted elements
Step A —Determine the optimal lag l∗ assuming a constant

lead–lag structure
evalA : Function returning the total cost of a fixed causal
path for given time series x and y
l = 0;
loop

n← (1, . . . , 1, 1, . . . , N) ∈ R
N+l;

m← (1, . . . , M , M , . . . , M ) ∈ R
N+l;

c[l + 1]← evalA(x[n], y[m]);
l← l + 1;
if l = N then break;

end loop
l∗ ← argmin(c[1], . . . , c[N])− 1;

Step B —Determine the optimal causal path permitting a
varying lead–lag structure
evalB : Function returning the causal path with local opti-
mal paths for given time series x and y

Step 1: Arrange the unrestricted elements of the
current causal path (descending order)
Step 2: Examine successively whether the fixed
element in combination with its
neighborhood represents a local optimal path

h← 1;
nh ← (1, . . . , 1, 1, . . . , N) ∈ R

N+l∗ ;
mh ← (1, . . . , M , M , . . . , M ) ∈ R

N+l∗ ;
loop

h← h+ 1;
P← evalB(x[nh−1], y[mh−1]);
nh ← P[, 1]; mh ← P[, 2];
if (nh, mh)− (nh−1, mh−1) = 0 then break;

end loop
n← nh; m← mh

Step C —Determine lag and standard deviation of the optimal
causal path

4. Study design

The empirical back-testing framework is conducted on
minute-by-minute prices on the S&P 500 index constituents
from January 1998 to December 2015 (see Section 4.1).
Following Gatev et al. (2006), the data set is sliced into
4527 overlapping study periods, each shifted by one day.
Each study period consists of a 1-day formation period
(Section 4.2) and a 1-day out-of-sample trading period
(Section 4.3). While the former trains the model and selects
the most suitable pairs using pre-defined criteria, the lat-
ter trades the top pairs applying rule-based entry and exit
signals.

4.1. Back-testing framework

The empirical application is performed on minute-by-minute
data of the S&P 500 from January 1998 to December 2015.
This highly liquid stock universe comprises the stocks of
the 500 leading blue-chip companies which provide high-
quality, widely accepted commodities and services. This data
set serves as a crucial test for any potential capital market
anomaly since the S&P 500 index covers 80 % of the total
U.S. market capitalization (S&P Dow Jones Indices 2015).
Following Stübinger and Endres (2018), a 2-stage process
is implemented with the aim of removing any survivor bias
from the data. First, a constituent list for the S&P 500 stocks
is obtained from QuantQuote (2016) from January 1998 to
December 2015. The constituency of the S&P 500 over time
is described by the constituent matrix—the rows of this matrix
characterize the trading days and the columns specify the
S&P 500 stocks. Each element of this matrix indicates a ‘1’ if
the corresponding corporation is a constituent of the S&P 500
index at the associated day, otherwise a ‘0’. Second, the full
archive of minute-by-minute stock prices from January 1998
to December 2015 is downloaded from QuantQuote (2016).
The associated stock exchange is opened from 9.30 am to
4.00 pm Eastern time, Monday through Friday. Consequently,
the minute-by-minute price time series of one stock involves
391 data points per day. Data are adjusted by stock splits,
dividends, and further corporate actions. Performing these
two steps, the study design is able to entirely replicate the
S&P 500 constituency and the appropriated price time series.
The introduced methodology and all relevant evaluations are
conducted in the statistical programming language R (R Core
Team 2017). The source code of computationally intensive
tasks is implemented in C+ + and connected to R.

4.2. Formation period

The 391-minute formation period conducts both an in-sample
training of all possible pair combinations and a selection pro-
cedure to find the most suitable pairs for the trading period.
Typically, the S&P 500 index comprises 500 stocks, i.e. the
strategy handles 500 · (500− 1)/2 = 124, 750 pairs per study
period. For each pair, Algorithm 1 is applied to the respective
return time series. Outputs are the optimal lag and the cor-
responding fluctuation of the unrestricted part of the optimal
causal path.

The model selects the top s pairs (s ∈ N) exhibiting the
most stable lead–lag structure during the formation period.
To be more specific, the top s pairs with the lowest standard
deviation around the specified lag are transferred to the trad-
ing period. Additionally, two constraints are applied to secure
a clear lead–lag relation. The algorithm only considers pairs
possessing non-zero lags and no lead–lag change during the
formation period.

4.3. Trading period

The top pairs with the lowest fluctuation around the speci-
fied lag are transferred to the 391-minute trading period (Ttra).
If the assumption holds and Algorithm 1 captures the cor-
rect lead–lag structure, then the strategy is in a position to
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predict the future returns of the following stock by exploiting
the information about the leading stock. To be more specific,
the algorithm generates trading signals for the following stock
based on the development of the leading stock. Without loss
of generality, the following lines assume that x leads y by l
minutes.

Every incoming price of the leading time series at time t is
used to calculate the corresponding minute-by-minute return
xt (t ∈ Ttra). The arbitrage strategy aims at capturing tem-
porary divergences of x using a combination of economic
threshold and market condition. First, the absolute minute-
by-minute return has to exceed the transaction cost r (r ∈
R
+
0 ) because a potential trade has to cover the expenses.

Second, the approach accounts for the magnitude of xt com-
pared to the prevailing market condition, i.e. entry thresh-
olds widen out in times of high market turmoil and vice
versa. To receive a relative definition of high and low, the
algorithm calculates the Bollinger bands based on the running
mean level μ(t) and standard deviation σ(t) of the returns
of the past d minutes (d ∈ N). The upper and lower band
is obtained by adding (subtracting) k-times the time-varying
standard deviation σ(t) to (from) the historical equilibrium
μ(t). Upon every entry signal, the framework buys 1 USD
worth of the undervalued stock and shorts 1 USD worth of
the overvalued stock. In line with Avellaneda and Lee (2010),
market exposure is hedged trade-by-trade with appropri-
ated capital expenditures in the S&P 500 index. Therefore,
the constructed dollar-neutral portfolio represents a classical
long–short investment strategy in the sense of Gatev et al.
(2006).

From a technical point of view, the algorithm employs the
following trading entry signals:

• xt > r and xt > μ(t)+ k · σ(t), i.e. y is underval-
ued. Consequently, the trading strategy goes long in
the stock of y and goes short in the S&P 500 index.

• xt < −r and xt < μ(t)− k · σ(t), i.e. y is overval-
ued. Consequently, the trading strategy goes short
in the stock of y and goes long in the S&P 500
index.

• Otherwise, it is assumed that the stock of y will
not show any meaningful mispricings in the future.
Consequently, the trading strategy does not execute
any trade.

Further entry signals are disregarded until the position is
closed, so that at most one active position per pair is simul-
taneously permitted. The trade is closed if the trade return
of the following stock exceeds the economic threshold—the
time frame for this execution is a 99.5% confidence inter-
val around the specified lag l. Also, active trades are closed
when the trading periods ends or if one of the stocks of
the respective pair is delisted from the S&P 500. Following
Miao (2014) and Stübinger and Endres (2018), a portfolio
consists of the top 10 pairs (s=10). The approach sets d=20
to be in line with Bollinger (1992) and Bollinger (2001).
Consistent with the high-frequency framework of Stübinger
and Bredthauer (2017), the model chooses k=2.5 in order to
avoid high transaction costs due to excessive trading. Voya
Investment Management (2016) reports a bid–ask spread

of 3.5 basis points for the S&P 500 caused by decimal-
ization, changes in the exchange landscape, and increased
use of algorithmic trading. The trading framework follows
Prager et al. (2012) and assumes 4 basis points per share
per round-trip. This assumption is deemed feasible given our
high turnover strategy in a highly liquid investment universe
based on minute-by-minute data. Transaction costs are con-
sidered both at the beginning and the end of the trade. In
accordance with Gatev et al. (2006), returns of the strategy
portfolio are calculated by means of committed capital and
actual employed capital. While the former divides the sum
of net profits by the number of pairs that are selected for the
trading period, the latter scales the portfolio payoffs by the
number of pairs that are actually active during the trading
period.

To assess the value-add of the trading strategy based
on optimal causal paths (OCP), it is benchmarked with
statistical arbitrage trading variants based on (1) correla-
tion (COR), (2) Manhattan distance (MAN), (3) lagged
cross-correlation (LCC), and (4) an S&P 500 buy-and-hold
strategy (MKT)—all well-established quantitative strategies.
Data and general framework are identical to OCP. The cor-
nerstones of these classic strategies are briefly discussed
below.

4.3.1. Correlation (COR). Following Chen et al. (2012),
the co-movement of stock pairs is measured by Pearson’s ρ

(see Pearson 1895). The top 10 pairs with the highest correla-
tion coefficient are transferred to the trading period. Positions
are put on at static upper and lower bands which are defined
by the 2.5-standard deviation from the historical mean. Trades
are reversed, when the spread crosses the historical mean.

4.3.2. Manhattan distance (MAN). The second benchmark
resembles COR and is motivated by the distance approach
of Gatev et al. (2006). To ensure consistency, the selection
criterion bears on the Manhattan distance, i.e. top pairs are
determined exhibiting the smallest sum of absolute differ-
ences of their normalized prices during the formation period.
Again, positions are opened at a 2.5-standard deviation trigger
and reverted at the next crossing of the prices.

4.3.3. Lagged cross-correlation (LCC). In the spirit of Kim
and Baginski (2016), the co-movement is quantified using
lagged cross-correlation which represents a set of correla-
tion coefficients for diverse time lags. The algorithm selects
top pairs based on the highest lagged cross-correlation—the
respective value provides the estimated lag between the given
time series. The trading algorithm is identical to OCP. Sum-
marizing, LCC is a reduced version of OCP since correlation
does not necessarily imply causality (see Alexander 2001).

4.3.4. S&P 500 buy-and-hold strategy (MKT). Last but
not least, OCP is benchmarked to a naive S&P 500 buy-
and-hold investment. The index is bought in January 1998
and held during the sample period. This passive strategy runs
without any trading signals.
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Table 1. Daily return characteristics and risk metrics for the top 10 pairs of COR, MAN, LCC, and OCP compared to an S&P 500
long-only benchmark (MKT) from January 1998 until December 2015.

Before transaction costs After transaction costs

COR MAN LCC OCP COR MAN LCC OCP MKT

Mean return 0.0027 0.0028 0.0038 0.0039 0.0008 0.0009 0.0012 0.0018 0.0002
Standard error (NW) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002
t-Statistic (NW) 22.4292 32.6506 26.4764 26.7328 6.4584 11.4329 8.3270 12.2256 0.9487
Minimum − 0.0555 − 0.0402 − 0.0717 − 0.0844 − 0.0563 − 0.0413 − 0.0742 − 0.0855 − 0.0947
Quartile 1 − 0.0009 0.0000 − 0.0001 0.0002 − 0.0026 − 0.0016 − 0.0027 − 0.0017 − 0.0056
Median 0.0024 0.0025 0.0028 0.0027 0.0005 0.0006 0.0002 0.0006 0.0006
Quartile 3 0.0060 0.0051 0.0064 0.0063 0.0039 0.0030 0.0038 0.0040 0.0061
Maximum 0.0775 0.1277 0.1342 0.3786 0.0755 0.1242 0.1312 0.3767 0.1096
Standard deviation 0.0079 0.0055 0.0089 0.0092 0.0076 0.0052 0.0088 0.0092 0.0126
Skewness 0.5814 3.2646 2.3371 15.8288 0.6226 3.5380 2.3077 16.1916 − 0.2020
Kurtosis 8.0890 64.8701 29.5211 611.3627 8.7552 73.9596 29.4934 631.8882 7.5312
Historical VaR 1% − 0.0191 − 0.0100 − 0.0165 − 0.0100 − 0.0204 − 0.0114 − 0.0191 − 0.0123 − 0.0350
Historical CVaR 1% − 0.0265 − 0.0146 − 0.0282 − 0.0184 − 0.0277 − 0.0160 − 0.0308 − 0.0206 − 0.0503
Historical VaR 5% − 0.0082 − 0.0041 − 0.0059 − 0.0038 − 0.0098 − 0.0057 − 0.0086 − 0.0060 − 0.0196
Historical CVaR 5% − 0.0150 − 0.0078 − 0.0129 − 0.0084 − 0.0164 − 0.0093 − 0.0155 − 0.0107 − 0.0302
Maximum drawdown 0.1200 0.0445 0.1065 0.0900 0.3355 0.2265 0.6291 0.6596 0.6433
Share with return ≥ 0 0.6967 0.7541 0.7453 0.7782 0.5405 0.5695 0.5147 0.5737 0.5317

Note: NW denotes Newey–West standard errors with 1-lag correction and CVaR the conditional value at risk.

5. Results

Following Cummins and Bucca (2012) and Endres and
Stübinger (2018), this paper conducts a holistic performance
analysis for the top 10 pairs of OCP from January 1998 to
December 2015 compared to the benchmarks COR, MAN,
LCC, and MKT. Specifically, the risk–return characteristics
as well as trading statistics for each strategy are evaluated
(Section 5.1). In the following subsections, we focus on OCP
and check its profitability in the context of cryptocurrency
(Section 5.2), investigate the exposure to common systematic
sources of risk (Section 5.3), and perform several robustness
checks (Section 5.4). Finally, the lead–lag structure and the
portfolio composition are analyzed (Section 5.5).

5.1. Strategy performance

Table 1 reports daily risk–return characteristics based on
employed capital before and after transaction costs for the top
10 pairs per strategy from January 1998 to December 2015.
Across all strategies, we observe positive returns after transac-
tion costs ranging between 8 basis points per day for COR and
18 basis points per day for OCP compared to 2 basis points for
the general market. From a statistical point of view, the returns
after transaction costs are also significant with Newey–West
(NW) t-statistics of at least 6.46. The S&P 500 long-only
benchmark leads to a standard deviation of 1.26%, approxi-
mately 50% higher than the corresponding key figure of COR,
MAN, LCC, and OCP. In stark contrast to the general market,
all variants exhibit positive skewness which displays a desir-
able property for any potential investor (Cont 2001). Kurtosis,
i.e. the fourth central moment is divided by the quadratic vari-
ance, above 3 suggests leptokurtic distribution for all strate-
gies. Specifically, OCP reaches a kurtosis of 631.89 compared
to the benchmarks (COR 8.76, MAN 73.96, LCC 29.49)—
the extremely high value for OCP is predominantly driven
by one outlier. Next, we observe for OCP that the kurtosis

after transaction costs is higher than the kurtosis before trans-
action costs (611.36). This circumstance is explained by the
following fact: Incorporating transaction costs increases the
relation of the fourth central moment and quadratic variance.
In line with Miao (2014), historical value at risk (VaR) mea-
sures is reported. Tail risk of all strategy variants is at a
very low level by contrast with the S&P 500, e.g. the his-
torical VaR 1% is -1.23% for OCP versus -3.50% for MKT.
The strategy OCP produces the highest hit ratio, i.e. the per-
centage of days with non-negative returns, with 57.37% after
transaction costs. Concluding, OCP achieves favorable return
characteristics and risk metrics—this statement remains valid
after transaction costs.

Table 2 depicts summary statistics about the trading fre-
quency of COR, MAN, LCC, and OCP. Across all strategies,
the number of pairs traded per 1-day period exceeds 7.86, a
value well in line with Gatev et al. (2006) as well as with
Stübinger and Bredthauer (2017). The average number of
round-trip trades per pair is vastly different for COR (1.93)
and MAN (2.30) compared to LCC (6.67) and OCP (5.32).
This dissimilarity is potentially driven by the different trading
strategies based on static bands (COR, MAN) and variable
bands (LCC, OCP). This picture barely changes considering
the trade duration—the average time pairs are open is approx-
imately 0.3 days for the static variants and around 0.05 days
for the dynamic approaches.

Table 3 portrays annualized risk–return measures for all
strategies. After transaction costs, OCP achieves 54.98 %—
classic trading strategies and a naive buy-and-hold strategy
are clearly outperformed. As expected, COR, MAN, LCC,
and OCP achieve substantial lower standard deviations than
the general market resulting in Sharpe ratios between 1.50 for
COR and 3.57 for OCP. Notably, only considering the down-
side risk reinforces this tendency: Sortino ratio, i.e. returns
are scaled by their downside deviation, is at 10.05 for OCP
compared to 6.05 for MAN, 4.50 for LCC, 2.73 for COR, and
0.15 for MKT. The results based on committed and employed
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Table 2. Trading statistics for the top 10 pairs of COR, MAN, LCC, and OCP per 1-day trading period.

COR MAN LCC OCP

Average number of pairs traded per 1-day period 7.8615 9.8471 9.8184 9.4489
Average number of round-trip trades per pair 1.9281 2.2953 6.6708 5.3198
Standard deviation of number of round-trip trades per pair 3.4057 1.9657 2.9933 3.7426
Average time pairs are open in days 0.2769 0.3441 0.0243 0.0567
Standard deviation of time open, per pair, in days 0.3681 0.3702 0.0528 0.0987

Table 3. Annualized risk–return measures for the top 10 pairs of COR, MAN, LCC, and OCP compared to an S&P 500
long-only benchmark (MKT) from January 1998 until December 2015.

Before transaction costs After transaction costs

COR MAN LCC OCP COR MAN LCC OCP MKT

Mean return 0.9811 1.0274 1.5910 1.6617 0.2066 0.2647 0.3372 0.5498 0.0219
Mean excess return 0.9412 0.9865 1.5388 1.6082 0.1823 0.2392 0.3102 0.5186 0.0012
Standard deviation 0.1253 0.0871 0.1412 0.1465 0.1214 0.0831 0.1405 0.1454 0.2001
Downside deviation 0.0658 0.0346 0.0603 0.0439 0.0756 0.0438 0.0750 0.0547 0.1438
Sharpe ratio 7.5117 11.3265 10.9002 10.9758 1.5019 2.8772 2.2085 3.5671 0.0060
Sortino ratio 14.9202 29.6858 26.3883 37.8238 2.7318 6.0456 4.4960 10.0504 0.1520
Committed capital
Mean return 0.6997 1.0022 1.5205 1.5498 0.1500 0.2579 0.3151 0.5193 0.0219
Sharpe ratio 6.7428 11.1915 10.6985 10.5628 1.3277 2.8349 2.1095 3.4746 0.0060

capital are at a similar level—this fact is not surprising since
the top pairs open in the vast majority of all cases.

Following Do and Faff (2010) and Bowen and Hutchin-
son (2016), a sub-period analysis is performed in order to
analyze the performance of the strategies over time. For this
purpose, figure 5 describes the development of an investment
of 1 USD after transaction costs (first row) compared to the
general market (second row).

The first sub-period ranges from January 1998 to June
2003 and defines the growth and collapse of the dot-com
bubble. In stark contrast to the S&P 500, the trading strate-
gies show a steady growth up, even in times of high market
turmoil. Thus, it is not surprising that annualized returns of
OCP exceed 120% at a Sharpe ratio of 8.80 after transac-
tion costs. The second sub-period ranges from July 2003
to December 2008 and describes the time of moderation

Figure 5. Development of an investment of 1 USD after transaction costs for the top 10 pairs of COR, MAN, LCC, and OCP in the first
row compared to the S&P 500 index (MKT) in the second row. The time period from 1998 until 2015 is divided into three sub-periods
(1998-01/2003-06, 2003-07/2008-12, 2009-01/2015-12).



930 J. Stübinger

and the global financial crisis. We observe that the strate-
gies are not affected by changing market regimes due to
the long–short portfolios we are constructing—a favorable
effect for investors. After transaction costs, OCP produces
annualized returns of 59.70% compared to 24.43% for COR,
16.42% for MAN, and 4.53% for LCC. The third sub-period
ranges from January 2009 to December 2015 and character-
izes the period of regeneration and comebacks. Annualized
returns vary between −2.53% for COR and 14.66% for OCP
compared to 10.58% for the general market. All strategies,
however, depict declining performance results since January
2012—this fact is confirmed by the majority of academic
research, e.g. Endres and Stübinger (2017) and Stübinger and
Endres (2018). Summarizing, the trading strategy OCP out-
performs classic approaches in a multitude of comparisons—
complexity pays off. Therefore, detailed evaluations of OCP
are conducted in the following subsections.

5.2. Investment strategy based on bitcoins

This subsection demonstrates the profitability of OCP even in
recent times by applying the outlined strategy in the context
of cryptocurrencies. Following Narayanan et al. (2016) and
Chohan (2017), a cryptocurrency represents an instrument of
exchange that uses cryptography to control the transactional
flow and the creation of additional units.

Key representative of cryptocurrencies are bitcoins which
are introduced by a person or group under the pseudonym of
Satoshi Nakamoto in 2008. Nakamoto (2008) develops a solu-
tion to the double-spending problem applying a peer-to-peer
network to ensure the chronological order of transactions.
The development of the bitcoin price (see figure 6) and the
seminal paper by Nakamoto (2008) characterize the trigger
for an ever-expanding interest in this field up to the present.

Figure 6. Bitcoin price from January 2012 to December 2015.

Until today, this study has been cited over 2200 times, with
more than 700 additional citations in 2017 on Google Scholar.
Baek and Elbeck (2015), Kristoufek (2015), and Bouoiyour et
al. (2016) investigate the most frequently claimed drivers of
bitcoin prices, e.g. standard fundamental factors, political risk,
and regulatory moves.

In the following, we apply the alternative investment strat-
egy OCPBIT, i.e. the trading algorithm in Section 4 is extended
by the condition that the bitcoin price characterizes the second
stock of each pair.

Table 4 exhibits annualized risk–return measures for the
top 10 pairs of OCPBIT from January 2012 until Decem-
ber 2015 compared to OCP, the bitcoin price (BIT), and the
S&P 500 index (MKT). The top 10 pairs of OCPBIT strongly
outperform with annualized returns after transaction costs of
170.37% compared to −20.07% for OCP, 60.88% for BIT,
and 12.01% for MKT. Across all strategies, the mean returns
almost equal the mean excess returns due to the fact that the
risk free rate is close to zero during the considered sample
period. Interestingly, the standard deviation of BIT is 4-times
to 20-times higher than OCP, OCPBIT, and MKT—a desirable
property since a stock market may be efficient during normal
times (Kim et al. 2011). The Sharpe ratio is above 6 in the
case of OCPBIT—the excess return clearly overcompensates
the risk.

In view of the clear outperformance of OCPBIT, we analyze
the portfolio composition on a more granular level. Figure 7
presents the histogram and descriptive statistics of the spec-
ified lags for the top 10 pairs of OCPBIT from January 2012
to December 2015. A positive lag indicates that the partner
stock leads the ‘bitcoin stock’ and vice versa. First of all, we
observe a clear asymmetry of the histogram—the vast major-
ity of pairs shows a positive lag suggesting that the ‘bitcoin
stock’ follows the selected partner stock. This statement is
confirmed by the descriptive statistics—on average the part-
ner stock leads the ‘bitcoin stock’ by 46.83 minutes. The
corresponding median amounts 11.00 minutes. This finding
indicates that the selected stocks contain remarkable informa-
tion about the prospective bitcoin returns. In contrast to OCP,
the strategy OCPBIT is in a position to make capital out of this
fact. Summarizing, OCPBIT poses a severe challenge to the
semi-strong form of market efficiency even in recent times.

5.3. Common risk factors

Table 5 evaluates the exposure of OCP after transaction costs
to systematic sources of risk. Following Knoll et al. (2018),

Table 4. Annualized risk–return measures for the top 10 pairs of OCP and OCPBIT, BIT, and MKT
from January 2012 until December 2015.

Before transaction costs After transaction costs

OCP OCPBIT OCP OCPBIT BIT MKT

Mean return 0.4395 3.6493 − 0.2007 1.7037 0.6088 0.1201
Mean excess return 0.4395 3.6490 − 0.2007 1.7035 0.6087 0.1201
Standard deviation 0.0647 0.2635 0.0642 0.2679 1.0340 0.1280
Downside deviation 0.0276 0.0717 0.0454 0.0798 0.7538 0.0891
Sharpe ratio 6.7970 13.8475 − 3.1271 6.3580 0.5887 0.9384
Sortino ratio 15.9312 50.9014 − 4.4251 21.3423 0.8077 1.3480
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Figure 7. Histogram of specified lags for the top 10 pairs of OCPBIT from January 2012 to December 2015. A positive (negative) lag
indicates that the ‘bitcoin stock’ follows (leads) the corresponding partner stock.

Table 5. Exposure to systematic sources of risk after trans-
action costs for the daily returns of the top 10 pairs of OCP

from January 1998 until December 2015.

FF3 FF3+ 2 FF5

(Intercept) 0.0017*** 0.0017*** 0.0017***
(0.0001) (0.0001) (0.0001)

Market 0.0158 0.0143 0.0267*
(0.0108) (0.0119) (0.0125)

SMB 0.0154 0.0168
(0.0217) (0.0218)

HML − 0.0150 − 0.0204
(0.0204) (0.0219)

Momentum − 0.0101
(0.0153)

Reversal − 0.0030
(0.0154)

SMB5 0.0221
(0.0234)

HML5 − 0.0335
(0.0232)

RMW5 0.0354
(0.0303)

CMA5 0.0368
(0.0371)

R2 0.0008 0.0009 0.0014
Adj. R2 0.0001 − 0.0002 0.0003
Num. obs. 4527 4527 4527
RMSE 0.0092 0.0092 0.0092

Note: Standard errors are depicted in parentheses.
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

three types of regression are employed. The Fama–French 3-
factor model (FF3) by Fama and French (1996) captures sys-
tematic risk exposure to general market, small minus big cap-
italization stocks (SMB), as well as high minus low book-to-
market stocks (HML). The Fama–French 3+2-factor model
(FF3+2), as outlined in Gatev et al. (2006), extends the first
model by a momentum factor and a short-term reversal fac-
tor. The Fama–French 5-factor model (FF5) by Fama and
French (2015) appends two factors to FF3, namely portfo-
lios of stocks with a robust minus weak profitability (RMW5)
and with a conservative minus aggressive (CMA5) investment
behavior. All data related to the models are procured from
Kenneth R. French’s website.†

† Thanks to Kenneth R. French for providing all relevant data for
these models on his website.

Irrespective of the regression model applied, daily returns
after transaction costs exhibit significant alphas of 0.17 %—
slightly higher than the raw returns. As expected, FF3 and
FF3+2 show no loading on the market—FF5 indicate a
marginal but statistical significant positive effect. Loadings on
SMB, HML, Momentum, Reversal, SMB5, HML5, RMW5,
and CMA5 are statistically not significant and close to zero—
this fact is not surprising since the strategy constructs dollar-
neutral portfolios. Concluding, OCP produces statistically
significant and economically remarkable returns after transac-
tion costs, outperforms classic arbitrage trading strategies and
indicates no loading on any common sources of systematic
risk.

5.4. Robustness checks

Whenever strategies generate remarkable returns it arouses
the suspicion of data snooping. Therefore, a series of robust-
ness checks is conducted to demonstrate the value-add of the
strategy outlined in Section 4.

First, the performance of OCP is contrasted with 2500 ran-
dom bootstraps of monkey trading. To be more specific, top
pairs are randomly selected. As expected, the average daily
returns after transaction costs amount −0.0010 compared to
0.0018 for OCP. This finding is well in line with Gatev et
al. (2006) and Stübinger et al. (2018).

Second, the robustness of OCP is evaluated in light of mar-
ket frictions. Therefore, a one-minute-waiting rule is applied
to deal with bid–ask bounces. After transaction costs, the
delayed execution of OCP achieves annualized returns of
12.23% from 1998 to 2011 and −34.04% from 2012 to 2015.
The strategy OCPBIT with a one-minute-waiting rule pro-
duces returns of 10.08% p.a. during the second time span after
transaction costs.

Third, the input parameters are motivated by the
literature—the trading threshold is set to 2.5 standard devia-
tion (k=2.5), the length of the moving average to 20 minutes
(d=20), and the number of top pairs to 10 (s=10). In
table 6, the parameters k, d, and s are varied in two direc-
tions and annualized mean return as well as Sharpe ratio
are reported. After transaction costs, the input parameter
k=2.5 generates the most promising risk–return relation.
Higher values can generally be found at higher levels of
d—this result is well in line with Stübinger et al. (2018).
Sharpe ratio increases for a larger number of top pairs
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Table 6. Yearly returns and Sharpe ratios after transaction costs for the k-times of the standard
deviation of OCP, the number of days to use in the moving window (d), and a varying number of

target stocks (s) from January 1998 until December 2015.

Return Sharpe ratio

k \ d 10 20 60 10 20 60

Top 5 2 0.4905 0.4985 0.5820 2.5216 2.9294 3.5444
2.5 0.3792 0.4975 0.5483 2.9741 3.5028 3.7178
3 0.0774 0.3743 0.4447 0.8405 3.0795 3.6153

Top 10 2 0.5210 0.5768 0.6251 3.0166 3.2021 3.3834
2.5 0.4192 0.5498 0.6149 2.9233 3.5671 3.7968
3 0.1026 0.4287 0.5334 1.2946 2.4034 3.7975

Top 20 2 0.5239 0.5825 0.6454 3.1983 3.7908 3.9150
2.5 0.4042 0.5472 0.6258 3.7457 4.0901 4.2927
3 0.1043 0.4155 0.5314 1.4128 3.3895 4.6025

Figure 8. Average lag (left axis) and average correlation (right axis) for the top 10 pairs of OCP in 60-day moving windows from January
1998 until December 2015.

because portfolio standard deviation declines. Concluding,
the initial setting of k, d, and s hits not the optimum
in light of annualized return and Sharpe ratio but trad-
ing results remain meaningful irrespective of the parameter
constellation.

5.5. Analysis of lead–lag structure and portfolio
constituents

Figure 8 reports the absolute lag and correlation for the
top 10 pairs over time. Overall, we observe antidromic
developments of determined lag and correlation, i.e. if one

Figure 9. Constituent portfolio for the top 10 pairs of OCP from January 1998 until December 2015.
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variable increases, the other decreases and vice versa. To be
more specific, the specified lag is approximately 120 min-
utes from 1998 until 2001. Since American financial markets
are decimalized from September 2000 to April 2001, the lag
decreases to approximately 20 minutes at the end of 2002—an
outlier is observed at the beginning of 2002. The correla-
tion exhibits a positive trend with some temporarily downside
fluctuations in 2002 and 2011.

Last but not least, figure 9 portrays the portfolio con-
stituency for the top 10 pairs of OCP over time (daily data
is clustered quarterly). According to the Global Industry
Classification Standard, all companies of the top pairs are
categorized into the following 10 economic sectors (valua-
tion date: 2015/12/31): Consumer Discretionary, Consumer
Staples, Energy, Financials, Health Care, Industrials, Infor-
mation Technology, Materials, Telecommunications Services,
and Utilities. Notably, the strategy possesses an anti-cyclical
constituent portfolio, i.e. sectors are avoided in times of bull
markets and vice versa. As such, stocks from the IT sector
are completely taken out of the portfolio during the dot-com
bubble at the turn of the millennium. In contrast, the port-
folio consists of a large number of technology companies in
the years after the crash—top value of approximately 50% is
achieved in 2006. On the same note, the percentage of finan-
cial stocks is close to zero in the years 2006 and 2007, the
height of subprime lending and fraudulent underwriting prac-
tices. In times of the global financial crisis and its aftermath,
the share rises up to 25% during the phase of high market
turmoil.

6. Conclusion

This paper presents an integrated statistical arbitrage trading
framework relying on the novel introduced optimal causal
path algorithm and deploys it on minute-by-minute data of the
S&P 500 constituents from January 1998 to December 2015.
In this respect, the manuscript makes three main contributions
to the existing literature.

The first contribution refers to the developed optimal causal
path algorithm and its use for identifying promising stock
pairs and for generating buy and sell signals. Essentially, the
flexible algorithm efficiently identifies the optimal non-linear
mapping given two time series and estimates its correspond-
ing lead–lag structure. Therefore, the established trading
strategy is in a position to predict the future returns of the
following stock by exploiting information about the leading
stock.

The second contribution focuses on the performance of
the proposed strategy and its value-add compared to well-
established frameworks in this area of research. In the empiri-
cal back-testing study, the trading algorithm achieves statisti-
cally and economically significant returns of 54.98% p.a. after
transaction costs—Fama–French models do not indicate any
loading on common sources of systematic risk. Results are
well superior to the benchmark approaches ranging between
2.19% for a naive buy-and-hold strategy of the S&P 500 index
to 33.72% for the variant based on lagged cross-correlation.
A series of robustness checks confirms the necessity of

regarding a model that permits an elastic adjustment of the
time axis.

The third contribution bears on the fact that the strategy
outperformances in the context of cryptocurrencies even in
the sample period from 2012 to 2015. Interestingly, a more
granular analysis shows that stock returns contain substan-
tial information about the future bitcoin returns. This finding
poses a severe challenge to the semi-strong form of market
efficiency.

For further research in this field, hidden Markov models
may be explored in order to receive probability distribu-
tions. Furthermore, a multivariate algorithm and arbitrage
framework that accounts for common interactions could be
implemented. Finally, the presented methodology might be a
promising tool for efficiently coping with time deformations
in other areas of application, such as human action recognition
or robot programming.
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