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SUMMARY

In options markets where there is a significant or persis-
tent  volatility smile,  implied tree models can ensure the
consistency of exotic options prices with the market
prices of liquid standard options.

Implied trees can be constructed in a variety of ways.
Implied binomial trees are minimal: they have just
enough parameters – node prices and transition probabil-
ities – to fit the smile. In this paper we show how to build
implied trinomial tree models of the volatility smile. Tri-
nomial trees have inherently more parameters than bino-
mial trees. We can use these additional parameters to
conveniently choose the “state space” of all node prices in
the trinomial tree, and let only the transition probabili-
ties be constrained by market options prices. This free-
dom of state space provides a flexibility that is sometimes
advantageous in matching trees to smiles.

A judicially chosen state space is needed to obtain a rea-
sonable fit to the smile. We discuss a simple method for
building “skewed” state spaces which fit typical index
option smiles rather well.
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Binomial trees are perhaps the most commonly used machinery for
options pricing. A standard Cox-Ross-Rubinstein (CRR) binomial tree
[1979] consists of a set of nodes, representing possible future stock
prices, with a constant logarithmic spacing between these nodes.
This spacing is a measure of the future stock price volatility, itself
assumed to be constant in the CRR framework. In the continuous
limit, a CRR tree with an “infinite” number of time steps to expira-
tion represents a continuous risk-neutral evolution of the stock price
with constant volatility. Option prices computed using the CRR tree
will converge to the Black-Scholes continuous-time results [1973] in
this limit.

The constancy of volatility in the Black-Scholes theory and its corre-
sponding binomial framework cannot easily be reconciled with the
observed structure of implied volatilities for traded options. In most
index options markets, the implied Black-Scholes volatilities vary
with both strike and expiration. This variation, known as the implied
volatility “smile,” is currently a significant and persistent feature of
most global index option markets. But the constant local volatility
assumption in the Black-Scholes theory and the CRR tree leads to
the absence of a volatility smile, at least as long as market frictions
are ignored.

Implied tree theories extend the Black-Scholes theory to make it con-
sistent with the shape of the smile1. They achieve this consistency by
extracting an implied evolution for the stock price in equilibrium
from market prices of liquid standard options on the underlying
stock. Implemented discretely, implied binomial trees are constructed
so that local volatility (or spacing) varies from node to node, making
the tree “flexible,” so that market prices of all standard options can be
matched. There is a unique implied binomial tree that fits option
prices in any market2, because binomial trees have the minimal
number of parameters, just enough to match the smile.

The uniqueness of implied binomial trees is usually desirable. Some-
times, however, it becomes disadvantageous, because the uniqueness
leaves little room for compromise or adjustment when the mecha-
nism of matching tree parameters to market options prices runs into
difficulties. These difficulties can arise from inconsistent and/or arbi-
trage-violating market options prices, which make a consistent tree

1.  See Derman and Kani [1994].
2.  Strictly speaking, the implied binomial tree is unique up to a user-specified cen-
tral tree trunk. In the continuous limit where there are an infinite number of nodes
at each time step, this choice becomes irrelevant.

INTRODUCTION
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impossible. Or, difficulties can arise in a more qualitative sense that,
even though the constructed tree is consistent, its local volatility and
probability distributions are jagged and “implausible.” In these cases,
one prefers to obtain trees whose local distributions are more plausi-
ble, even though they may not match every single market options
price3. One way to make implied tree structures more flexible is to
consider using implied trinomial (or multinomial) trees. These trees
inherently possess more parameters than binomial trees. In the con-
tinuous limit, these parameters are superfluous and have no effect,
and many different multinomial trees can all converge to the same
continuous evolution process. But, for a finite number of tree periods,
the parameters in any particular tree can be tuned to impose plausi-
ble smoothness constraints on the local distributions, and some trees
may be more appropriate than others.

The use of trinomial trees for building implied models has been sug-
gested by Dupire [1994]. The extra parameters in trinomial trees
give us the freedom to choose the price (that is, the location in “price
space”) at each node in the tree. This freedom to pre-specify the “state
space” can be quite advantageous if used judiciously. After an appro-
priate choice of the state space has been made, the transition proba-
bilities can be iteratively calculated to ensure that all European
standard options (with strikes and maturities coinciding with the
tree nodes) will have theoretical values which match their market
prices. We will show the equations to perform the iteration are very
similar to those derived for implied binomial trees.

Implied theories assume that the stock (or index) price follows a pro-
cess whose instantaneous (local) volatility  varies only with
spot price and time4. Under this assumption, since all uncertainty in
the local volatility is derived from uncertainty in the stock price, we
can hedge options using the stock, and so, as in the traditional Black-

3.  To be honest, we point out that no one really knows all the market options prices
needed to find the price and transition probabilities at every tree node. In practice,
there are market quotes for a discrete set of commonly traded strikes and expira-
tions, and market participants interpolate or extrapolate implied volatilities to other
points.
4.  This process is an extension of constant volatility lognormal process, and is
described by the stochastic differential equation:

where  is the standard Wiener process,  is the risk-free rate of interest at
time , and  is the local volatility assumed to depend only on the future time

 and future spot price .

IMPLIED THEORIES
σ S t,( )

dS
S

------ r t( )dt σ S t,( )dZ+=

dZ r t( )
t σ S t,( )

t S
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Scholes theory, valuation remains preference-free. To do this we need
to know the functional form of the local volatility function. It has
been shown by Derman and Kani [1994], and separately by Dupire
[1994] and Rubinstein [1994], that in principle we can determine the
local volatility function directly from the market prices of liquidly-
traded options.

Once the local volatility function is determined, all future evolution
of the stock price  is known. We can price any option using this evo-
lution process, secure in the knowledge that our pricing model is com-
pletely consistent with the prices of all liquid options with the same
underlier. Therefore, implied theories provide us with a method for
moving directly from the market option prices to the underlying equi-
librium price process.

An implied binomial tree is a discrete version of a continuous evolu-
tion process that fits current options prices, in much the same way as
the standard CRR binomial tree is a discrete version of the Black-
Scholes constant volatility process5. Figure 1 shows schematic repre-
sentation of an implied binomial tree compared to a standard CRR
tree. The node spacing is constant throughout a standard CRR tree,
whereas in an implied binomial tree it varies with market level and
time, as specified by the local volatility function .

Derman and Kani [1994] show how to construct the implied binomial
tree inductively. Figure 2 depicts the parameters to be determined in
moving from level n to level n+1 starting from an already known

5.  For a review of implied binomial tree models, also see Chriss [1996a].

S

Implied Binomial Trees

σ S t,( )

implied binomial treestandard binomial tree(a) (b)

FIGURE 1. Schematic representation of (a) standard CRR binomial
tree, (b) implied binomial tree.
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representative stock price si at time tn. All node prices and transition
probabilities up to the nth level of the tree at time tn are assumed to
be known at this stage. We want to determine the node prices at the
(n+1)th level of the tree at time tn+1 along with transition probabili-
ties for moving from level n to level n+1 of the tree. There are 2n+1
unknown parameters; n+1 node values Si and n transition probabili-
ties p, to be determined from the known values of n forward contracts
Fi whose delivery date is tn+1 with delivery price Si , and n options Ci
expiring at tn+1 with strike Si. Derman and Kani [1994] provide the
detailed algorithm that fixes the unknown parameters from the
known prices6.

There is one free parameter because the number of unknowns
exceeds the number of knowns by one. This free parameter allows an
arbitrary choice for the central node at each level of the tree. For
example, in a CRR-style implied binomial tree, we choose the central
node of an odd-numbered tree level to have the same value as today’s
spot price. Another alternative is to choose the price of the central
node to grow at the forward interest rate7. In the continuous limit of
a tree with infinite levels, all trees become identical and any Euro-
pean standard option valued on the tree has a price that matches its
market price.

Aside from the choice of the central trunk, the implied binomial tree
is uniquely determined from forward and option prices. As mentioned

6.  The extension of this result to American options is discussed in Chriss [1996b].
7.  See Barle and Cakici [1995].

o

o

o

Si+1
si

Si

(n,i) Fi

level n n+1
time tn tn+1∆t

, Ci

pi

FIGURE 2. The implied binomial tree is constructed inductively using
forward prices and interpolated option prices at each tree node.



5

QUANTITATIVE STRATEGIES RESEARCH NOTES
Goldman
Sachs

above, sometimes we desire more flexibility in setting up the theory
discretely. The need for flexibility reflects the common-sense feeling
that, to be considered plausible, the local volatilities, transition prob-
abilities and probability distributions generated by the implied tree
should vary as smoothly as possible with market level and time
across the tree. This is particularly important when the available
options market prices are inaccurate because they reflect bids made
at an earlier market level, or are inefficient because of various mar-
ket frictions that may not be included in the model. In these cases we
would prefer to start by using “smooth” trees for valuing and hedging
complex options. One way to introduce more flexibility is to use trino-
mial (or higher multinomial) tree structures for building implied tree
models, as we will discuss in the remainder of this paper.

Trinomial trees provide another discrete representation of stock price
movement, analogous to binomial trees8. Figure 3 illustrates a single
time step in a trinomial tree. The stock price at the beginning of the
time step is S0. During this time step the stock price can move to one
of three nodes: with probability p to the up node, value Su; with prob-
ability q to the down node, value Sd; and with probability 1 – p – q to
the middle node, value Sm. At the end of the time step, there are five
unknown parameters: the two probabilities p and q, and the three
node prices Su, Sm and Sd.

8.  We remind the reader that both trinomial and binomial trees approach the same
continuous time theory as the number of periods in each is allowed to grow without
limit. Despite their limiting similarity, one kind of tree may sometimes be more con-
venient than another.

TRINOMIAL TREES

S0

Su

Sm

Sd

p

1-p-q

q

o

o

o

o

FIGURE 3. In a single time step of a trinomial tree the stock price can
move to one of three possible future values, each with its respective
probability. The three transition probabilities sum to one.
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In a risk-neutral trinomial tree the expected value of the stock at the
end of the period must be its known forward price ,
where δ is the dividend yield. Therefore:

(EQ 1)

If the stock price volatility during this time period is , then the node
prices and transition probabilities satisfy:

(EQ 2)

where Ο(∆t) denotes terms of higher order than ∆t. Different discreti-
zations of risk-neutral trinomial trees have different higher order
terms in Equation 2.

Of the five parameters needed to fix the whole tree, Equations 1 and
2 provide only two constraints, and so we have three more parame-
ters than are necessary to satisfy them. By contrast, for implied bino-
mial trees, all unknown parameters were determined by the
constraints. As a result, we can construct many “economically equiv-
alent” trinomial trees which, in the limit as the time spacing
becomes very small, represent the same continuous theory. Appendix
A discusses a few different ways for building constant volatility trino-
mial trees. When volatilities are not constant, a common method is to
choose the stock prices at every node and attempt to satisfy the two
constraints through the choice of the transition probabilities. This
method of initially choosing the state space of prices for the trinomial
tree, and then solving for the transition probabilities, is familiar in
most applications of the finite-difference method. We must make a
judicious choice of the state space in order to insure that the transi-
tion probabilities remain between 0 and 1, a necessary condition for
the discrete world represented by the tree to preclude arbitrage.

Figure 4 gives schematic representations for both standard and
implied trinomial trees.

Standard trinomial trees represent a constant volatility world and
are constructed out of a regular mesh. The implied trinomial tree has
an irregular mesh conforming to the variation of local volatility with
level and time across the tree. To fix the nodes and probabilities in an
implied trinomial tree we need the forward prices and option prices
corresponding to strikes and expiration at all tree nodes. In contrast
to the construction of an implied binomial tree, here we have total
freedom over the choice of the state space of an implied trinomial
tree. In choosing a state space, we eliminate three of the five

F0 S0e r δ–( )∆t=

pSu qSd 1 p– q–( )Sm+ + F0=

σ

p Su F0–( )2 q Sd F0–( )2 1 p– q–( ) Sm F0–( )2+ + F0
2σ2∆t O ∆t( )+=

∆t

Implied Trinomial Trees
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unknown parameters corresponding to the evolution of each node
(see Figure 3), leaving only the transition probabilities to solve for.
We will construct our implied trinomial tree model in two stages.
First, we judiciously choose a state space, i.e specify the position of
every tree node. Next, knowing the location of every node, we use
market forward and option prices to calculate the transition probabil-
ities between the nodes.

Suppose that we have already fixed the state space of the implied tri-
nomial tree. Figure 5 shows the nth and (n+1)th levels of the tree. We
will use induction to infer the transition probabilities pi and qi for all
tree nodes (n,i) at each tree level n. Our notation and treatment fol-
lows the Derman and Kani [1994] binomial tree construction.

Since the implied trinomial tree is risk-neutral, the expected value of
the stock at the node (n,i) at the later time tn+1, must be the known
forward price of that node. This gives one relationship between the
unknown transition probabilities and known stock and forward
prices:

(EQ 3)

Let C(Si+1,tn+1) and P(Si+1,tn+1) respectively denote today’s market
price for a standard call and put option struck at Si+1 and expiring at
time tn+1. We obtain the values of these options by interpolating the
smile surface at various strike and time points corresponding to the
implied tree nodes. The trinomial tree value of a call option struck at
K and expiring at tn+1 is the sum over all nodes (n+1, j) of the dis-

implied trinomial treestandard trinomial tree
(a) (b)

FIGURE 4. Schematic representations of (a) standard trinomial tree,
(b) implied trinomial tree

CONSTRUCTING THE
IMPLIED TRINOMIAL TREE

piSi 2+ 1 pi– qi–( )Si 1+ qiSi+ + Fi=
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counted probability of reaching that node multiplied by the call pay-
off there. Hence

(EQ 4)

If we set the strike K to the value Si+1, the stock price at the node
(n+1,i+1), then we can rearrange the terms and use Equation 3 to
write the call price in terms of known Arrow-Debreu prices, known
stock prices, known forward prices, and a contribution from up-tran-
sition probability pi to the first in-the-money node:

(EQ 5)

The only unknown in Equation 5 is the transition probability pi,
since the stock prices are already fixed by the choice of state space,
and the option price C(Si+1,tn+1) and the forward prices Fi are known

node

(n,2n-1)

(n,2n-2)

(n,i)

(n,2)

(n,1)

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

level
time

n n+1
tn tn+1

s2n-2

s2n-1

si

s2

s1

S2n+1

S2n

S2n-1

S2n-2

Si+2

Si+1

Si

S4

S3

S2

S1

NOTATION

r:  known riskless forward
 interest rate between level
n and n+1

si: known stock price at node
 (n,i))

Fi: known forward price at
 level n+1of the stock price si
at level n

Si: known stock price at node
(n+1,i) and also the strike for

λi: known Arrow-Debreu price
at node (n,i)

pi: unknown risk-neutral
 transition probability

   from node (n,i) to node
(n+1, i+2)

qi: unknown risk-neutral
transition probability

  from node (n,i) to node
(n+1,i)

λ2n-1

λ2n-2

λi

λ2

λ1

pi

1-pi-qi

qi

p2n-1

q1

p1

q2n-1

FIGURE 5. Computing the transition probabilities from nth to (n+1)th level
of an implied trinomial tree, assuming that the position of all the nodes
is already fixed.

options expiring at level n+1

C K tn 1+,( ) e r∆t– λ j 2– pj 2– λ j 1– 1 pj 1–– qj 1––( ) λ jq j+ +{ }max Sj K– 0,( )
j

∑=

er∆tC Si 1+ tn 1+,( ) λipi Si 2+ Si 1+–( ) λ j F j Si 1+–( )
j i 1+=

2n

∑+=
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from the smile. We can solve this equation for pi:

(EQ 6)

Using Equation 3 we can solve for the down transition probability qi:

(EQ 7)

We use put option prices P(Si+1,tn+1) to determine the transition
probabilities from all the nodes below (and including) the center node
(n+1,n) at time tn. This leads to the equation

(EQ 8)

for qi and, using Equation 3, the following equation for pi:

(EQ 9)

We can now use Equation 2 to find the local volatility σ at each node.

We illustrate the construction of an implied trinomial tree. We
assume that the current index level is 100, the dividend yield is 5%
per annum and the annually compounded riskless interest rate is
10% for all maturities. We also assume that implied volatility of an
at-the-money European call is 15%, for all expirations, and that
implied volatility increases (decreases) 0.5 percentage points with
every 10 point drop (rise) in the strike price. To keep our example
simple, we choose the state space of our implied trinomial model to
coincide with nodes of a 3-year, 3-period, 15% (constant) volatility
CRR-type, trinomial tree, as shown in Figure 6.

The method used to construct this state space is described in Figure
14(a) in Appendix A. The first node, at time t0 = 0, is labeled A in Fig-
ure 6 and it has a price SA = 100, equal to today’s spot price. All the
central nodes (i+1,i) in this tree also have the same price as this
node. The next three nodes, at time t1 = 1, have prices S1 = 80.89,

pi

er∆tC Si 1+ tn 1+,( ) λ j F j Si 1+–( )
j i 1+=

2n

∑–

λi Si 2+ Si 1+–( )-------------------------------------------------------------------------------------------------=

qi
Fi pi Si 2+ Si 1+–( )– Si 1+–

Si Si 1+–
------------------------------------------------------------------=

qi

er∆tP Si 1+ tn 1+,( ) λ j Si 1+ Fj–( )
j 0=

i 1–

∑–

λi Si 1+ Si–( )-------------------------------------------------------------------------------------------=

pi
Fi qi Si 1+ Si–( ) Si 1+–+

Si 2+ Si 1+–
-----------------------------------------------------------=

A DETAILED EXAMPLE
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S2 = 100 and S3 = 123.63, respectively. These values are found using
the equation , as discussed in Appendix A.

We can determine the up and down transition probabilities pA and
qA, corresponding to node A, using Equations 8 and 9 with er∆t = 1.1
and λA = 1.0. Then

P(S2,t1) is the calculated value of a put option, struck at S2 = 100 and
expiring one year from now. From the smile, the implied volatility of
this option is 15%. We calculate its price using a constant volatility
discrete trinomial tree with the same state space, and find it to be
$3.091. Also the summation term Σ in the numerator is zero in this
case because there are no nodes with price higher than S3 at time t1.
Combining these we find qA = 0.178.

The one-period forward price corresponding to node A is FA = Se(r-δ)∆t

= 104.50. Equation 9 then gives the value of pA:

Since probabilities add to one, the middle transition probability is
equal to 1 - pA - qA = 0.488.

The Arrow-Debreu prices corresponding to each of the three nodes at
time t1 are defined to be the (total) discounted probabilities that the
stock price reaches at that node. For these nodes the Arrow-Debreu

100.00

123.63

100.00

80.89

152.85

123.63

100.00

80.89

65.43

188.97

152.85

123.63

100.00

80.89

65.43

52.92

0 1 2 3
time

(years)

A

B

FIGURE 6. State space of a trinomial tree with constant volatility of
15%. The method described in diagram (a) of Figure 14 (in
Appendix A) is used to construct this state space.

S1 3, S σ+− 2∆t( )exp=

qA
1.1 P S2 t1,( )× Σ–

1.0 100 80.89–( )×-----------------------------------------------=

pA
104.5 0.178 100 80.89–( )× 100.00–+

123.63 100.00–
----------------------------------------------------------------------------------------------- 0.334= =
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prices turn out to be just the transition probabilities divided by er∆t.
The implied local volatility at node A is calculated using Equation 2:

The difference between the 14.6% implied local volatility and the
15% implied volatility assumed for this option arises from the higher
order terms in Equation 2, and will vanish as the time spacing
approaches zero.

As another example let us look at node B in year 2 of Figure 6. The
stock price at this node is SB = 123.63, whose forward price one
period later is FB = 129.19. From this node, the stock can move to one
of three future nodes at time t3 = 3, with prices S4 = 100, S5 = 123.63
and S6 = 152.85. We can apply Equations 5 and 6 to find the up and
down transition probabilities from this node. Then using λB = 0.292
we find

The value of a call option, struck at 123.63 and expiring at year 3 is
C(S5,t3) = $4.947, corresponding to the implied volatility of 13.81%
interpolated from the smile. There is a single node above node B
whose forward price F5 = 159.73 contributes to the summation term
Σ, giving Σ = 0.0825 x (159.73-123.63) = 2.978. Putting this back into
the above equation we find pB = 0.289. The down transition probabil-
ity qB is then calculated as

Also from Equation 2 we find the implied local volatility at this node
is σB = 13.6%.

The transition probabilities in Equations 6-9 for any node must lie
between 0 and 1, otherwise the implied tree allows riskless arbi-
trages which are inconsistent with rational options prices. For
implied trinomial trees, there are two possible causes for negative
probability at a node. First, the forward price Fi of a node (n,i) may
fall outside the range Si to Si+2 as illustrated in Figure 8. In that case
the forward condition of Equation 3 cannot be satisfied with all tran-
sition probabilities lying between 0 and 1.

σA
0.334 123.63 104.5–( )2× 0.488 100 104.5–( )2 0.178 80.89 104.5–( )2×+ +

104.52 1×
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

14.6 %=

pB
1.1 C S5 t3,( ) Σ–×

0.292 152.85 123.63–( )×---------------------------------------------------------------=

qB
129.19 0.289 152.86 123.63–( )× 123.63––

100 123.63–
------------------------------------------------------------------------------------------------------------ 0.122= =

What Can Go Wrong?
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0 1 2 3
time

(years)

up-transition probability tree:

nodes show p i

down-transition probability tree:

nodes show q i

Arrow-Debreu price tree:

nodes show λi

local volatility tree:

nodes show σ(si ,tn)

0.178

0.134

0.178

0.134

0.036

0.122

0.167

0.278

0.437

1.000

0.304

0.443

0.162

0.083

0.292

0.295

0.115

0.042

0.017

0.133

0.246

0.212

0.098

0.030

0.017

0.146

0.140

0.146

0.171

0.107

0.136

0.143

0.169

0.201

0.334

0.299

0.334

0.421

0.219

0.289
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FIGURE 7. The up- and down- transition probability trees, Arrow-
Debreu tree and local volatility tree
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However, it is usually not difficult to avoid these types of situations
by making an appropriate choice for the state space of the trinomial
tree. We must make sure that our choice of state space does not allow
any violations of the forward price condition, as shown in Figure 8.

The second reason for having negative probabilities relates to the
magnitude of local volatility at an implied tree node. For instance, an
especially large (small) value for the call option C(Si+1,tn+1) in Equa-
tion 6 would imply a large (small) value of local volatility at si. Hav-
ing fixed the position of all the nodes, it may not be possible to obtain
such extreme values of local volatility with probabilities between 0
and 1. In these cases we must overwrite the option price which pro-
duces the unacceptable probabilities, and replace it with another
option price of our choice. In doing so we must maintain the forward
condition at every node of the tree. This is always possible when we
are working with a state space in which the forward price violations
of Figure 8 do not occur, as our next example illustrates.

For our second example, we assume that the implied volatility of an
at-the-money European call is 15% and that implied volatility
increases (decreases) 1 percentage point with every 10 point drop
(rise) in the strike price. This skew is twice as steep as in our previ-
ous example. Using the same state space (i.e the 15% constant-vola-
tility CRR-type trinomial tree) as was used before in Figure 6, we
find negative transition probabilities at nodes A, B and C of Figure 9.

Si

Si+2

Si+1

Si

o

o

o

o

Fi

Si

Si+2

Si+1

Si

o

o

o

o

Fi

Fi > Si+2 : qi < 0 or pi > 1 Fi < Si : pi < 0 or qi > 1

qi

pi

pi

qi

FIGURE 8. There will be negative transition probabilities for any node
whose forward price does not lie between Si and Si+2.
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There are an infinite number of ways to overwrite negative probabili-
ties with numbers between 0 and 1 which satisfy the forward condi-
tion. For example, since we work with state spaces where the forward
price condition Si < Fi < Si+2 holds at every tree node, we can always
choose the value of middle transition probability to be zero (essen-
tially reducing the node to a binomial node) and set the up and down
transition probabilities to pi = (Fi – Si)/(Si+2 – Si) and qi = 1 – pi
respectively.

FIGURE 9. For the skew of 1 percentage point for every 10 strike points,
the 15% constant-volatility trinomial tree has negative probabilities at
nodes A, B and C. These probabilities, shown in larger type, have
been overwritten while maintaining the forward price condition.
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up-transition probability tree:

nodes show p i

down-transition probability tree:

nodes show q i

local volatility tree:

nodes show σ(si ,tn)
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0.194

0.157
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0.140

0.157

0.157

0.334
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0.334

0.512
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0.371

0.371
C

B

A

C

B

A

C

B

A



15

QUANTITATIVE STRATEGIES RESEARCH NOTES
Goldman
Sachs

In Figure 9 we have used an alternative method of overwriting
where, if Si+1 < Fi < Si+2, we set

and

and, if Si < Fi < Si+1 , we set

and

In either case the middle probability is equal to 1 - pi - qi.

Regular state spaces with uniform mesh sizes are usually adequate
for constructing implied trinomial tree models when implied volatil-
ity varies slowly with strike and expiration. But if volatility varies
significantly with strike or time to expiration, it may be necessary to
choose a state space whose mesh size (or node spacing) changes sig-
nificantly with time and stock level.

Figure 10 shows a more appropriate choice of state space in which
the negative probabilities in the above example do not occur and
there is no need for overwrites. This state space is “skewed” with
spacing between the nodes at the same time point decreasing with
stock level. This helps the state space fit the market’s negative vola-
tility skew better. The results are shown in Figure 11.

The implied trinomial tree model constructed using this skewed state
space has no negative probabilities, fits the option market prices
accurately, and generates reasonably smooth values for local volatil-
ity at different stock and time points.

One way to construct trinomial state spaces with proper skew and
term structure is to build it in the following two stages:

• First, assume all interest rates (and dividends) are zero and build
a regular trinomial lattice with constant time spacing ∆t and loga-
rithmic level spacing ∆S. Any constant volatility trinomial tree
corresponding to a typical market implied volatility (see Appendix
A) is an example of this type of lattice. Then modify ∆t at different
times and, subsequently, ∆S at different stock levels until the lat-
tice captures the basic term-and skew- structures of local volatility
in the market.

pi
1
2
---

Fi Si 1+–

Si 2+ Si 1+–
----------------------------

Fi Si–

Si 2+ Si–
----------------------+= qi

1
2
---

Si 2+ Fi–

Si 2+ Si–
----------------------=

pi
1
2
---

Fi Si–

Si 2+ Si–
---------------------- 

 = qi
1
2
---

Si 2+ Fi–

Si 2+ Si–
----------------------

Si 1+ Fi–

Si 1+ Si–
----------------------+=

Constructing the State
Space for the Implied
Trinomial Tree
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FIGURE 10. A skewed choice for the state space of the implied
trinomial tree model for the second example.

100.00

121.21

100.00

78.78

143.26
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78.78

58.56

166.05

143.26

121.21

100.00

78.78

58.56

39.50

0 1 2 3
time

(years)

FIGURE 11. For the skew of 1 percentage point for every 10 strike points,
the skewed trinomial tree has no negative probabilities. The resulting
local volatilities at different nodes are reasonably smooth.
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up-transition probability tree:

nodes show p i

down-transition probability tree:
nodes show q i

local volatility tree:
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• Next, if there are forward price violations, in the sense of Figure 8,
in any of the nodes, grow all the node prices along the forward
curve9 by multiplying all zero-rate node prices at time ti by the
growth factor . This effectively removes all forward price
violations.

Figure 12 shows the steps described above. Figure 12(a) depicts a
regular state space. In the state space of Figure 12(b) the time steps
increase with time and price steps decrease with stock price. In Fig-
ure 12(c) the forward growth factor has been applied to all the nodes
to ensure that no forward price violations remain. The resulting state
space in this figure is more suitable for a market with significant
(inverted) term-structure and (negative) skew-structure. Some of the
details of this type of construction are provided in Appendix B.

We must point out that, for a fixed number of time and stock price
levels, it may be impossible to avoid all negative probabilities, no
matter what choice we make for the state space. As long as our choice
does not violate the forward price condition at any node, we can over-
write the option prices which produce negative probabilities. In this
way, even though we give up fitting the option price at some of the
implied tree nodes, we fit the forward prices with transition probabil-
ities which lie between 0 and 1 at every node. Generally, the less
overwriting we have to do in our implied tree, the better it will fit the
smile.

9.  It may not be necessary to grow the nodes precisely along the forward rate curve.
Any sufficiently large growth factor which removes forward price violations of the
types described in Figure 8 will be sufficient.

e r δ–( )ti
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(a)
o

o o
o
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(c)

FIGURE 12. A schematic construction for the state space of the implied
trinomial tree model: (a) build a regular trinomial lattice with equal
time and price steps; (b) modify different time and then price steps in
the lattice; (c) grow the lattice along the forward interest rate curve.
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Lastly, in the previous section we described some simple choices for
overwriting unacceptable transition probabilities. We may think of
other types of overwriting strategies which, for example, may involve
keeping local volatilities or distributions as smooth as possible across
the tree nodes. One strategy is to try fitting the probabilities to the
local volatility at the previous node before applying a more naive
overwrite like those discussed in the previous section. Other more
complicated strategies require use of optimization over the set of pos-
sible overwrites and are more difficult to implement.
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This appendix provides several methods for constructing constant
volatility trinomial trees that can serve as initial state spaces for
implied trees. The different methods described here will all converge
to the same theory, i.e the constant-volatility Black-Scholes theory, in
the continuous limit. In this sense, we can view them as equivalent
discretizations of the constant volatility diffusion process. Figure 13
shows two common methods for building binomial trees. There are in
general an infinite number of (equivalent) binomial trees, all repre-
senting the same discrete constant volatility world. This is due to a
freedom in the choice of overall growth of the price at tree nodes (not
to be confused with the stock’s risk-neutral growth rate). If we multi-
ply all the node prices of a binomial tree by some constant (and rea-
sonably small) growth factor, we will end up with another binomial
tree which has different (positive) probabilities but represents the
same continuous theory. The familiar Cox-Ross-Rubinstein (CRR)
binomial tree has the property that all nodes with same spatial index
have the same price. This makes CRR tree look regular in both spa-
tial and temporal directions. The Jarrow-Rudd (JR) binomial tree10

has the property that all probabilties are equal to 1/2. This property
makes the JR tree a natural discretization for the Brownian motion.
The JR tree does not grow precisely along the forward risk-free inter-
est rate curve, but we can just as easily construct binomial trees
which have this property11.

FIGURE 13. Two equivalent methods for building constant-volatility
binomial tree.

10.  See Jarrow and Rudd [1983].
11.  In a recombining constant volatility binomial tree Su and Sd have the general
form:  and , for any reasonable number .

APPENDIX A: Constructing
Constant-Volatility
Trinomial Trees

Su Seπ∆t σ ∆t+= Sd Seπ∆t σ ∆t–= π

S

p  =   (SF - Sd) /(Su - Sd) != 1/2

Su

Sd

 p   =   (SF - Sd) /(Su - Sd) = 1/2

S

Su

Sd

(a) CRR binomial tree (b) JR binomial tree

Seσ ∆t

Se σ– ∆t

Se r σ2 2⁄–( )∆t σ ∆t+Su  =

Sd  =

Su =

Se r σ2 2⁄–( )∆t σ– ∆tSd =
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We have even more freedom when it comes to building constant vola-
tility trinomial tree. Figure 14 illustrates three methods for doing so.
The first two are based on the fact that we can view two steps of a
binomial tree in combination as a single step of a trinomial tree. Fig-
ure 14(a) uses a CRR-type binomial tree do so whereas Figure 14(b)
uses a JR-type binomial tree. To construct other kinds of trinomial
tree we can apply a variety of criteria, all of which may be equally
reasonable12. For example, diagram (c) is based on the requirement
that all three transition probabilities be equal (to 1/3) for all the tree
nodes. Another common choice of probabilities, which we have not
described here but is simple to construct, is p = q = 1/6.

12.  In a recombining constant volatility trinomial tree Su, Sm, and Sd have the gen-
eral form ,  and  for φ > 1 and any rea-
sonable value of π.

Su Seπ∆t φσ ∆t+= Sm Seπ∆t= Sd Seπ∆t φσ ∆t–=

p  = 1/4

(a) Combining two steps of (b) Combining two steps of

Su  =

Sm  =

Su  =

Sm =

a CRR binomial tree a JR binomial tree

Sd  =

p  =

q  =

Sd =

(c) Equal-probability tree

Su=
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Sd=

p   =  1/3

q  =  1/3

S

Su
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Sd

S

Su

Sm

Sd

S

Su

Sm

Sd

p

q

p

q

p

q

Seσ 2∆t

S

Se σ 2∆t–

er∆t 2⁄ e σ ∆t 2⁄––

eσ ∆t 2⁄ e σ ∆t 2⁄––
-----------------------------------------------

 
 
 2

eσ ∆t 2⁄ er∆t 2⁄–

eσ ∆t 2⁄ e σ ∆t 2⁄––
-----------------------------------------------

 
 
 2

Se r σ2 2⁄–( )∆t σ 2∆t+

Se r σ2 2⁄–( )∆t

Se r σ2 2⁄–( )∆t σ– 2∆t

q = 1/4

Se r σ2 2⁄–( )∆t σ 3∆t 2⁄+

Se r σ2 2⁄–( )∆t

Se r σ2 2⁄–( )∆t σ– 3∆t 2⁄

FIGURE 14. Three equivalent methods for building constant volatility
trinomial trees. (a) Combining two steps of a CRR binomial tree. (b)
Combining two steps of a JR binomial tree. (c) Equal-probability tree
with p = q = 1/3.
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If there is significant term- or skew-structure in implied volatilities,
we need to build a trinomial state space with irregular mesh size to
better accommodate the variations of the local volatilities with time
and level. One obstacle in achieving this is the fact that often we do
not a priori know what the local volatility function looks like. How-
ever, there are exceptions. For example, if there is a significant term-
structure but little skew-structure in the market then local volatility
is mostly a function of time13. On the other hand, if there is a large
skew-structure but insignificant term-structure in the implied vola-
tilities then we know that local volatility is mostly a function of the
level14.

Assume that interest and dividend rates are zero for now. Consider
the term-structure case first. Here local volatility is some function of
time . We can introduce the notion of scaled time  as

for some constant c. Differentiating both sides of this equation we can
write an equivalent non-linear equation describing  in terms of t:

Using the scaled time in place of standard time transforms the stock
evolution process to a constant volatility (Black-Scholes) process15.
We can choose the constant c so that the rescaled and physical times
coincide at some fixed future time T, e.g. . In this case

13.  If Σ = Σ(T) is the implied volatility for expiration T, then local volatility at time
t=T is given by the relation σ2(T) = d[TΣ2(T)]/dT.
14.  If Σ = Σ0 + b(K-K0) is implied volatility for strike price K, then the local volatility
at level K in the vicinity of K0 is roughly given by the relation σ = Σ0 + 2b(K-K0)
15.  Define a new stock price variable  by the relation  and also a new
Brownian motion  by

.

Then, using the definition of scaled time we find:

Hence the new stock price variable evolves with constant volatility .
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In the discrete-time world of a multinomial tree, with known (equally
spaced) time points , we want to find unknown
scaled times  such that  is the same con-
stant for all times . This guarantees that the tree will recombine.
One way to do this is by iteratively searching for solutions of discrete-
time analogues of the second set of earlier (non-linear) relations:

; k = 1, ..n

Next consider the skew-structure. Assume that local volatility is
some function  of the level. This assumption is roughly valid
when implied volatilities have little or no term-structure. We define
the scaled stock price  using the equation16:

for some constant c. The scaled stock price has a constant volatility
equal to c17. A reasonable discrete representation of scaled stock
price movements can be given by a constant volatility tree. Inverting
this equation, we can convert the discrete nodal values of  to dis-
crete values of . In the resulting -tree the spacing between nodes
varies with the level corresponding to the similar variation in local
volatility. We can choose the constant c to represent the at-the-money
or some other typical value of local volatility. For any fixed time
period, if  denote the nodal values of scaled stock price, the corre-
sponding stock price values can be found by solving the discrete ver-
sion of the above equation. For nodes which lie above the central node
this gives:

16.  See Nelson and Ramaswamy [1990].
17.  Starting from the stochastic equation  and using Ito’s lemma

.

There is an induced drift from the variation of the local volatility function with level.
Starting from a constant volatility state space, the discrete world trinomial (or
higher multinomial) implementations can accommodate this drift through the choice
of transition probabilities, given small enough drift or short enough time step.
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and for those below it gives18:

Again we can set the constant c to the at-the-money or any other rea-
sonable value of local volatility19.

In general, if local volatility is in the form of a product of some func-
tion of time and some function of stock price, i.e if local volatility
function is “separable”, then we can perform the scaling transforma-
tions on time and stock price independently. As a result we will
obtain state spaces which can accommodate a term-structure with a
constant skew-structure superimposed on it. A simple example of
this is when local volatility has a Constant Elasticity of Variance
(CEV) form:

Here  represents the at-the-money term structure and  is a
constant skew or elasticity parameter. Most equity options markets
have time-varying skew structures. Despite this, with judicious
choices for term-structure and skew parameters and using the proce-
dure outlined above, we can create a state space which fits any par-
ticular options market rather well. Non-zero interest rates and
dividends can also be incorporated in this state space by growing all
the nodes with an appropriate growth factor, as discussed in the
main text.

18.  To guarantee positivity of stock prices we can use alternative relations:

 and  for nodes above and below the
central nodes respectively. These relations have the further advantage that when
volatility is constant (and equal to c) the - and -trees will be identical.
19.  Choosing somewhat larger volatilities increases the spacing between the nodes
and often improves the ability of the tree to fit option prices. A similar situation
occurs in explicit finite-difference lattices where increasing the price spacing relative
to time spacing increases the stability of the solutions.
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