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Abstract

In this paper we review the renowned constant elasticity of variance (CEV) option pricing model and give the detailed derivations.
There are two purposes of this article. First, we show the details of the formulae needed in deriving the option pricing and bridge the
gaps in deriving the necessary formulae for the model. Second, we use a result by Feller to obtain the transition probability density
function of the stock price at time T given its price at time t with t < T . In addition, some computational considerations are given
for the facilitation of computing the CEV option pricing formula.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Cox [4] has derived the renowned constant elasticity of variance (CEV) option pricing model and Schroder [10] has
subsequently extended the model by expressing the CEV option pricing formula in terms of the noncentral Chi-square
distribution. However, neither of them has given details of their derivations as well as the mathematical and statistical
tools in deriving the formulae. There are two purposes of this article. First, we integrate the results obtained by Cox
[4] and Schroder [10] and bridge the gaps in deriving the necessary formulae for the model. Second, we use a result
by Feller [7] to obtain the transition probability density function of the stock price at time T given its price at time t
with t < T . We also show the details of the formulae needed in deriving the option pricing. A proof of Feller’s result
is given in Appendix A.
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2. The CEV diffusion and its transition probability density function

The CEV option pricing model assumes that the stock price is governed by the diffusion process:

dS = μS dt + σSβ/2 dZ, β < 2, (1)

where dZ is a Wiener process and σ is a positive constant. The elasticity is β − 2 since the return variance υ(S, t) =
σ2Sβ−2 with respect to price S has the following relationship:

dυ(S, t)/dS

υ(S, t)/S
= β − 2,

which implies that dυ(S, t)/υ(S, t) = (β − 2) dS/S. Upon integration on both sides, we have log υ(S, t) = (β −
2) log S + log σ2, or υ(S, t) = σ2Sβ−2.

If β = 2, then the elasticity is zero and the stock prices are lognormally distributed as in the Black and Scholes
model. If β = 1, then (1) is the model proposed by Cox and Ross [5].

In this article, we will focus on the case of β < 2 since many empirical evidences (see Campbell [2], Glosten et al.
[8], Brandt and Kang [1]) have shown that the relationship between the stock price and its return volatility is negative.
The transition density for β > 2 is given by Emanuel and Macbeth [6] and the corresponding CEV option pricing
formula can be derived through a similar strategy. For more details, see Chen and Lee [3].

In order to derive the CEV option pricing model, we need the transition probability density function f (ST |St, T > t)
of the stock price at time T given the current stock price St . For the transition probability density function f (ST |St),
we will start with the Kolmogorov forward and backward equations.

Assume Xt follows the diffusion process:

dX = μ(X, t) dt + σ(X, t) dZ, (2)

and P = P(Xt, t) is the function of Xt and t, then P satisfies the partial differential equations of motion. From (2), we
have the Kolmogorov backward equation:

1

2
σ2(X0, t0)

∂2P

∂X2
0

+ μ(X0, t0)
∂P

∂X0
+ ∂P

∂t0
= 0 (3)

and the Kolmogorov forward (or Fokker–Planck) equation:

1

2

∂2

∂X2
t

[σ2(Xt, t)P] − ∂P

∂Xt

[μ(Xt, t)P] − ∂P

∂t
= 0. (4)

Consider the following parabolic equation

(P)t = (axP)xx − ((bx + h)P)x, 0 < x < ∞, (5)

where P = P(x, t), and a, b, h are constants with a > 0, (P)t is the partial derivative of P with respect to t, ( )x and
( )xx are the first and second partial derivatives of ( ) with respect to x. This can be interpreted as the Fokker–Planck
equation of a diffusion problem in which bx + h represents the drift, and ax represents the diffusion coefficient.

Lemma (Feller [7]). Let f (x, t|x0) be the probability density function for x and t conditional on x0. The explicit form
of the fundamental solution to the above parabolic equation is given by

f (t, x|x0) = b

a(ebt − 1)

(
e−btx

x0

)(h−a)/2a

exp

{
−b(x + x0 ebt)

a (ebt − 1)

}
I1−h/a

(
2b

a(1 − e−bt)
(e−btxx0)

1/2
)

, (6)

where Ik(x) is the modified Bessel function of the first kind of order k and is defined as

Ik(x) =
∞∑

r=0

(x/2)2r+k

r!Γ (r + 1 + k)
. (7)

Proof. See Appendix A. �
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Before pursuing further, we will first consider the special case in which β = 1 which is the model considered by
Cox and Ross [5]. In this situation we have

dS = μ(S, t) dt + σ(S, t) dZ, (8)

where σ(S, t) = σ
√

S.
Now suppose also that each unit of the stock pays out in dividends in the continuous stream b(S, t) so that the

required mean becomes μ(S, t) = rS − b(S, t) = rS − (aS + h), where b(S, t) = aS + h and r is the risk-free interest
rate. Then dS = [(r − a)S − h] dt + σ

√
S dZ and the differential option price equation becomes

1

2
σ2S

∂2P

∂S2 + [(r − a)S − h]
∂P

∂S
+ ∂P

∂t
= rP (9)

and the corresponding Kolmogorov forward equation for the diffusion process (8) is

1

2

∂2

∂S2
t

(σ2ST P) + ∂

∂ST

[((r − a)S − h)P] − ∂P

∂t
= 0, (10)

which is obtained by using (4) with μ(xt, t) = (r − a)S − h.
Comparing with (6), we set a = σ2/2, x = ST , x0 = St, b = r − σ2/2, h = −h and t = τ = (T − t). Thus, we have

the following transition probability density function for the Cox–Ross model:

f (ST |St, T > t) = 2(r − σ2/2)

σ2[e(r−σ2/2)τ − 1]

(
St e(r−σ2/2)τ

ST

)(1+2h/σ2)/2

× exp

{
−2(r − σ2/2)[ST + St e(r−σ2/2)τ]

σ2[e(r−σ2/2)τ − 1]

}
I1+2h/σ2

⎛
⎝4(r − σ2/2)(StST e(r−σ2/2)τ)

1/2

σ2[e(r−σ2/2)τ − 1]σ2

⎞
⎠ .

(11)

We next consider the constant elasticity of variance diffusion,

dS = μ(S, t) + σ(S, t) dZ, (12)

where

μ(S, t) = rS − aS (13)

and

σ(S, t) = σSβ/2, 0 ≤ β < 2. (14)

Then

dS = (r − a)S dt + σSβ/2 dZ. (15)

Let Y = Y (S, t) = S2−β. By Ito’s Lemma with

∂Y

∂S
= (2 − β)S1−β,

∂Y

∂t
= 0,

∂2Y

∂S2 = (2 − β)(1 − β)S−β,

we have

dY = [(r − a)(2 − β)Y + 1
2σ2(β − 1)(β − 2)] dt + σ2(2 − β)2Y dZ. (16)

The Kolmogorov forward equation for Y becomes

∂P

∂t
= 1

2

∂2

∂Y2 [σ2(2 − β)YP] − ∂

∂Y

{[
(r − a)(2 − β)Y + 1

2
σ2(β − 1)(β − 2)

]
P

}
. (17)
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Then f (ST |St, T > t) = f (YT |yt, T > t)|J | where J = (2 − β)S1−β. By Feller’s Lemma with a =
(1/2)σ2(2 − β)2, b = (r − a)(2 − β), h = (1/2)σ2(β − 2)(1 − β), x = 1/T, x0 = 1/t and t = τ = (T − t), we
have

f (ST |St, T > t) = (2 − β)k∗1/(2−β)(xz1−β)
1/(2(2−β))

e−x−zI1/(2−β)(2(xz)1/2), (18)

where

k∗ = 2(r − a)

σ2(2 − β)[e(r−a)(2−β)τ − 1]
, x = k∗S2−β

t e(r−a)(2−β)τ, z = k∗S2−β
T .

Cox [4] obtained the following option pricing formula:

C = St e−rτ
∞∑

n=0

e−xxnG(n + 1 + 1/(2 − β), k∗K2−β)

Γ (n + 1)
− K e−rτ

∞∑
n=0

e−xxn+1/(2−β)G(n + 1, k∗K2−β)

Γ (n + 1 + 1/(2 − β))
, (19)

where G(m, ν) = [Γ (m)]−1 ∫∞
ν

e−uum−1 du is the standard complementary gamma distribution
function.

For a proof of the above formula, see Chen and Lee [3]. We next present the detailed derivations of the option
pricing formula as presented by Schroder [10]. Since the option pricing formula is expressed in terms of the noncentral
Chi-square complementary distribution function, a brief review of the noncentral Chi-square distribution is presented
in the next section.

3. Review of noncentral Chi-square distribution

If Z1, . . . , Zν are standard normal random variables, and δ1, . . . , δν are constants, then

Y =
ν∑

i=1

(Zi + δi)
2 (20)

is the noncentral Chi-square distribution with ν degrees of freedom and noncentrality parameter λ =∑ν
j=1δ

2
j , and is

denoted as χ′
ν

2(λ). When δj = 0 for all j, then Y is distributed as the central Chi-square distribution with ν degrees of

freedom, and is denoted as χ2
ν . The cumulative distribution function of χ′

ν
2(λ) is

F (x; ν, λ) = P(χ′
ν

2(λ) ≤ x) = e−λ/2
∞∑

j=0

(λ/2)j

j!2ν/2Γ (ν/2 + j)

∫ x

0
yν/2+j−1 e−y/2 dy, x > 0. (21)

An alternative expression for F (x; ν, λ) is

F (x; ν, λ) =
∞∑

j=0

(
(λ/2)je−λ/2

j!

)
P(χ2

ν+2j ≤ x). (22)

The complementary distribution function of χ′
ν

2(λ) is

Q(x; ν, λ) = 1 − F (x; ν, λ), (23)

where F (x; ν, λ) is given in either (21) or (22).
The probability density function of χ′

ν
2(λ) can be expressed as a mixture of central Chi-square probability density

functions:

p
χ′

ν
2(λ)(x) = e−λ/2

∞∑
j=0

(1/2λ)j

j!
pχ2

ν+2j
(x) = e−(x+λ)/2

2ν/2

∞∑
j=0

xν/2+j−1λj

Γ (ν/2 + j)22jj!
. (24)
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An alternative expression for the probability density function of χ′
ν

2(λ) is

p
χ′

ν
2(λ)(x) = 1

2

(x

λ

)(ν−2)/4
exp

{
−1

2
(λ + x)

}
I(ν−2)/2(

√
λx), x > 0, (25)

where Ik is the modified Bessel function of the first kind of order k and is defined as

Ik(z) =
(

1

2
z

)k ∞∑
j=0

(z2/4)
j

j!Γ (k + j + 1)
. (26)

It is noted that for integer k:

Ik(z) = 1

π

∫ π

0
ez cos(kθ) cos(kθ) dθ = I−k(z). (27)

The noncentral Chi-square distribution satisfies the reproductivity property with respect to n and λ. If X1, . . . , Xk are
independent random variables with Xt distributed as χ′

ni

2(λi), then

Y =
k∑

i=1

Xi ∼ χ′2∑k

i=1
ni

(
k∑

i=1

λi

)
. (28)

4. The noncentral Chi-square approach to option pricing model

Following Schroder [10], with the transition probability density function given in (18), the option pricing formula
under the CEV model is

C = E(max(0, ST − K)) = e−rτ

∫ ∞

K

f (ST |St, T > t)(ST − K) dST

= e−rτ

∫ ∞

K

ST f (ST |St, T > t) dST − e−rτK

∫ ∞

K

f (ST |St, T > t) dST = C1 − C2. (29)

where τ = T − t

4.1. Detailed derivations of C1 and C2

Making the change of variable w = k∗S2−β
T , we have

dST = (2 − β)−1k∗−1/(2−β)
w(β−1)/(2−β) dw.

Thus, with y = k∗K2−β, we have

C1 = e−rτ

∫ ∞

y

e−x−w(x/w)1/(4−2β)I1/(2−β)(2
√

xw)(w/k∗)1/(2−β) dw

= e−rτ

∫ ∞

y

e−x−w(x/w)1/(4−2β)I1/(2−β)(2
√

xw)(w/x)1/(2−β)(x/k∗)1/(2−β) dw

= e−rτ(x/k∗)1/(2−β)
∫ ∞

y

e−x−w(x/w)−1/(4−2β)I1/(2−β)(2
√

xw) dw

= e−rτSt e(r−a)τ
∫ ∞

y

e−x−w(w/x)1/(4−2β)I1/(2−β)(2
√

xw) dw

= e−aτSt

∫ ∞

y

e−x−w(w/x)1/(4−2β)I1/(2−β)(2
√

xw) dw (30)
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and

C2 = K e−rτ

∫ ∞

y

(2 − β)k∗1/(2−β)(xw1−2β)
1/(4−2β)

e−x−wI1/(2−β)(2
√

xw)
k∗−1/(2−β)

2 − β
w(β−1/2−β) dw

= K e−rτ

∫ ∞

y

x1/(4−2β)w(1−2β+2β−2)/(4−2β) e−x−wI1/(2−β)(2
√

xw) dw

= K e−rτ

∫ ∞

y

e−x−w(x/w)1/(4−β)I1/(2−β)(2
√

xw) dw. (31)

Recall that the probability density function of the noncentral Chi-square distribution with noncentrality λ and degree
of freedom ν is

p
χ′

ν
2(λ)(x) = 1

2 (x/λ)(ν−2)/4I(ν−2)/2(
√

λx) e−(λ+x)/2 = P(x; ν, λ).

Let Q(x; ν, λ) = ∫∞
x

p
χ′

ν
2(λ)(y) dy. Then letting w′ = 2w and x′ = 2x, we have

C1 = St e−aτ

∫ ∞

y

e−(x+w)/2
(w

x

)1/(4−2β)
I1/(2−β)

(
2
√

xw
)

dw

= St e−aτ

∫ ∞

2y

e−(x′+w′)/2
(

w′

x′

)1/(4−2β)

I1/(2−β)

(
2
√

x′w′
) 1

2
dw′

= St e−aτQ(2y; ν, x′), = St e−aτQ

(
2y; 2 + 2

2 − β
, 2x

)
(32)

obtained by noting that (ν − 2)/2 = 1/(2 − β), implying ν = 2 + 2/(2 − β). Analogously, with w′ = 2w, x′ = 2x and
In(z) = I−n(z), we have

C2 = K e−rτ

∫ ∞

y

e−x−w
( x

w

)1/(4−2β)
I1/(2−β)

(
2
√

xw
)

dw

= K e−rτ

∫ ∞

2y

e−(x′+w′)/2
(

x′

w′

)1/(4−2β)

I1/(2−β)

(
2
√

x′w′
) 1

2
dw′ = Q

(
2y; 2 − 2

2 − β
, 2x

)
, (33)

obtained by noting that (ν∗ − 2)/2 = −1/(2 − β), implying ν∗ = 2 − 2/(2 − β). Thus,

C = St e−aτQ

(
2y; 2 + 2

2 − β
, 2x

)
− K e−rτQ

(
2y; 2 − 2

2 − β
, 2x

)
. (34)

It is noted that 2 − 2/(2 − β) can be negative for β < 2. Thus further work is needed. Using the monotone convergence
theorem and the integration by parts, we have∫ ∞

y

P(2y; 2ν, 2k) dk =
∫ ∞

y

e−z−k(z/k)ν−1
√

kz
ν−1

∞∑
n=0

(zk)n

n!Γ (n + ν − 1 + 1)
dk

=
∫ ∞

y

e−zzn+ν−1

Γ (n + ν)

∫ ∞

y

e−kkn

Γ (n + 1)
dk =

∞∑
n=0

g(n + ν, z)G(n + 1, y)

=
∞∑

n=0

g(n + ν − 1, z)
∞∑
i=1

g(i, y). (35)

Now we also have the result G(n, y) =∑∞
i=1g(i, y), which can be shown by observing that

G(n, y) =
∫ ∞

y

e−kkn−1

Γ (n)
dk = −

∫ ∞

y

kn−1

Γ (n)
de−k = yn−1e−y

Γ (n)
+
∫ ∞

y

kn−2e−k

Γ (n − 1)
dk =

n∑
i=1

yi−1e−y

Γ (i)
=

n∑
i=1

g(i, y).
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The above result can also be expressed as

G(m + 1, t) = g(m + 1, t) + G(m, t). (36)

Next, applying the monotone convergence theorem, we have

Q(z; ν, k) =
∫ ∞

z

1

2

(y

k

)(ν−2)/4
Iν−2/2

(√
ky
)

e−(k+y)/2 dy

=
∫ ∞

z

1

2

(y

k

)(ν−2)/4
(

1

2

√
ky

)(ν−2)/2 ∞∑
n=0

(ky/4)n

n!Γ (ν + 2n/2)
e−(k+y)/2 dy

=
∞∑

n=0

e−k/2 kn(1/2)n

Γ (n + 1)

∫ ∞

z

e−y/2yν+2n/2−1

(1/2)−(ν+2n)/2Γ (ν + 2n/2)
dy

=
∞∑

n=0

e−k/2 (k/2)n

Γ (n + 1)

∫ ∞

z

(1/2)(ν+2n)/2

Γ (ν + 2n/2)
e−y/2y(ν+2n/2)−1 dy

=
∞∑

n=0

e−k/2 (k/2)n

Γ (n + 1)
Q(z; ν + 2n, 0), (37)

where

Q(z; ν + 2n, 0) =
∫ ∞

z

(1/2)(ν+2n)/2

Γ (ν + 2n/2)
e−y/2yν+2n/2−1 dy

=
∫ ∞

z/2

1

Γ (ν + 2n/2)
e−yy(ν+2n/2)−1 dy = G(n + ν/2, z/2).

Furthermore, from the property of G(·, ·) as shown in (36), we have

Q(z; ν, k) =
∞∑

n=0

g

(
n + 1,

k

2

)
G
(
n + ν

2
,
z

2

)
=

∞∑
n=0

g

(
n,

k

2

)
G

(
n + ν − 2

2
,
z

2

)
. (38)

Hence:

Q(2z; 2ν, 2k) =
∞∑

n=0

g(n, k)G(n + ν − 1, z).

Using the property of G(·, ·) as given in (36) again, we have

Q(2z; 2ν, 2k) = g(1, k)G(ν, z) + g(2, k)G(ν + 1, z) + g(3, k)G(ν + 2, z) + · · ·
= g(1, k)[G(ν − 1, z) + g(ν, z)] + g(2, k)[G(ν − 1, z) + g(ν + 1, z)] + g(3, k)[G(ν − 1, z)

+g(ν, z) + g(ν + 1, z) + g(ν + 2, z)] + · · · = [G(ν − 1, z) + g(ν, z)]
∞∑

n=1

g(n, k)

+g(ν + 1, z)
∞∑

n=2

g(n, k) + g(ν + 2, z)
∞∑

n=3

g(n, k) + · · · = G(ν − 1, z) + g(ν, z)

+g(ν + 1, z)[1 − g(1, k)] + g(ν + 2, z)[1 − g(1, k) − g(2, k)] + · · ·

= G(ν − 1, z) +
∞∑

n=0

g(ν + n, z) − g(ν + 1, z)[g(1, k)] − g(ν + 2, z)[g(1, k) + g(2, k)] + · · ·

= 1 − g(ν + 1, z)[g(1, k)] − g(ν + 2, z)[g(1, k) + g(2, k)] − · · · .
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We conclude that

Q(2z; 2ν, 2k) = 1 −
∞∑

n=1

g(n + ν, z)
n∑

i=1

g(i, k). (39)

From (35) and (39) we observe that∫ ∞

y

P(2z; 2ν, 2k) dk = 1 − Q(2z; 2(ν − 1), 2y). (40)

Thus, we can write C2 as

C2 = K e−rτ

∫ ∞

y

P

(
2x; 2 + 2

2 − β
, 2w

)
dw = K e−rτQ

(
2y; 2 − 2

2 − β
, 2x

)

= K e−rτ

(
1 − Q

(
2x;

2

2 − β
, 2y

))
. (41)

From (41) we immediately obtain

Q

(
2y; 2 − 2

2 − β
, 2x

)
+ Q

(
2x;

2

2 − β
, 2y

)
= 1 (42)

implying that

Q(z; 2n, k) + Q(k; 2 − 2n, z) = 1, (43)

with degrees of freedom 2 − 2n of Q(k; 2 − 2n, z) can be a non-integer.
From (42), we can obtain that the noncentral Chi-square Q(2y; 2 − 2/(2 − β), 2x) with 2 − 2/(2 − β) degrees of

freedom and the noncentrality parameter 2x can be represented by another noncentral Chi-square distribution 1 −
Q(2x; 2/(2 − β), 2y) with degrees of freedom 2/(2 − β) and the noncentrality parameter 2y. The standard definition
of noncentral Chi-square distribution in Section 3 has integer degrees of freedom. If the degree of freedom is not an
integer, we can use (43) to transfer the original noncentral Chi-square distribution into another noncentral Chi-square
distribution. Thus, we obtain an option pricing formula for the CEV model in terms of the complementary noncentral
Chi-square distribution function Q(z; ν, k) which is valid for any value of β less than 2, as required by the model.

Substituting (41) into (34), we obtain

C = St e−aτQ

(
2y; 2 + 2

2 − β
, 2x

)
− K e−rτ

(
1 − Q

(
2x;

2

2 − β
, 2y

))
, (44)

where y = k∗K2−β, x = k∗S2−β
t e(r−a)(2−β)τ, k∗ = 2(r − a)/(σ2(2 − β)(e(r−a)(2−β)τ − 1)) and a is the continuous pro-

portional dividend rate. The corresponding CEV option pricing formula for β > 2 can be derived through the same
fashion. When β > 2 (see, Emanuel and MacBeth [6] and Chen and Lee [3]), the call option formula is as follows:

C = St e−aτQ

(
2x;

2

β − 2
, 2y

)
− K e−rτ

(
1 − Q

(
2y; 2 + 2

β − 2
, 2x

))
. (45)

We note that from the evaluation of the option pricing formula C, especially C2, as given in (34), we have

2k∗S2−β
T ∼ χ′

ν
2(λ), (46)

where

ν = 2 − 2

2 − β
, λ = 2k∗S2−β

t e(r−a)(2−β)τ .

Thus, the option pricing formula for the CEV model (44) can be obtained directly from the payoff function:

max(ST − K, 0) =
{

ST − K, if ST > K

0, otherwise
(47)

by taking the expectation of (47), with ST having the distribution given by (46).
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Before concluding this subsection we consider that the noncentral Chi-square distribution will approach log-normal
as β tends to 2. When either λ or ν approaches to infinity, the standardized variable

χ′
ν

2(λ) − (ν + λ)√
2(ν + 2λ)

tends to N(0, 1) as either ν → ∞ or λ → ∞. Using the fact that (xa − 1)/a will approach to ln x as a → 0, it can be
verified that

lim
β→2−

χ′
ν

2(λ) − (ν + λ)√
2(ν + 2λ)

= lim
β→2−

2k∗S2−β
T − (ν + λ)√
2(ν + 2λ)

= lim
β→2−

2r∗S2−β
T − (1 − β)σ2(er∗τ(2−β) − 1) − 2r∗S2−β

t er∗τ(2−β)

σ2(er∗τ(2−β) − 1)

×
√

σ2(er∗τ(2−β) − 1)/(2 − β)

(1 − β)σ2(er∗τ(2−β) − 1) + 4r∗S2−β
t er∗τ(2−β)

= ln ST − [ln St + (r∗ − σ2/2)τ]

σ
√

τ
,

where r∗ = r − a. Thus:

ln ST | ln St ∼ N

(
ln St +

(
r − a − σ2

2

)
τ, σ2τ

)
(48)

as β → 2−. Similarly, (48) also holds when β → 2+. From (45), we have 2k∗S2−β
T ∼ χ′

ν
2(λ), where ν = 2 + 2/(β − 2)

if β > 2. Thus, we clarify the result of (48).

4.2. Some computational considerations

As noted by Schroder [10], (39) allows the following iterative algorithm to be used in computing the infinite sum
when z and k are not large. First initialize the following four variables (with n = 1)

gA = e−zzν

Γ (1 + ν)
= g(1 + ν, z), gB = e−k = g(1, k), Sg = gB, R = 1 − (gA)(Sg).

Then repeat the following loop beginning with n = 2 and increase increment n by one after each iteration. The loop is
terminated when the contribution to the sum, R, is declining and is very small.

gA = gA

(
z

n + ν − 1

)
= g(n + ν, z), gB = gB

(
k

n − 1

)
= g(n, k),

Sg = Sg + gB = g(1, k) + g(n, k), R = R − (gA)(Sg) = the nth partial sum.

At each iteration, gA equals g(n + ν, z), gB equals g(n, k) and Sg equals g(1, k) + · · · + g(n, k). The computation is
easily done.

As for an approximation, Sankaran [9] showed that the distribution of (χ′
ν

2
/(ν + k))

h
is approximately normal with

the expected value μ = 1 + h(h − 1)P − h(2 − h)mP2/2 and variance σ2 = h2P(1 + mP), where h = 1 − (2/3)(ν +
k)(ν + 3k)(ν + 2k)−2, P = (ν + 2k)/(ν + k)2 and m = (h − 1)(1 − 3h). Therefore we have

Q(z; ν, k) = Pr(χ′2z) = Pr

(
χ′2

ν + k
>

z

ν + k

)
= Pr

⎛
⎝( χ′2

ν + k

)h

>

(
z

ν + k

)h

⎞
⎠

=̇ Φ

(
1 − hP[1 − h + 0.5(2 − h)mP] − (z/ν + k)h

h
√

2P(1 + mP)

)
.
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5. Concluding remarks

The option pricing formula under the CEV model is quite complex because it involves the cumulative distribution
function of the noncentral Chi-square distribution Q(z; ν, k). Some computational considerations given in the article
which will facilitate the computation of the CEV option pricing formula. Hence, the computation will no longer be a
difficult problem in practice.
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Appendix A. Proof of Feller’s Lemma

We need some preliminary results in order to prove (6).

Proposition 1. f (z) = eAν/zz−1is the Laplace transformation of I0(2(Aνx)1/2), where Ik(x) is the Bessel function:

Ik(x) =
∞∑

r=0

(x/2)2r+k

r!Γ (r + 1 + k)
.

Proof. By the definition of Laplace transformation and the monotone convergence theorem, we have

f (z) =
∫ ∞

0
e−zxI0(2(Aνx)1/2) dx =

∫ ∞

0
e−zx

∞∑
r=0

(Aνx)1/2

r!Γ (r + 1)

=
∫ ∞

0
e−zx

{
1 + (Aνx)

Γ (2)
+ (Aνx)2

2!Γ (3)
+ · · · + (Aνx)n

n!Γ (n + 1)
+ · · ·

}

= 1

z
+ Aν

z2 + (Aν)2

2!z3 + · · · + (Aν)n

n!zn+1 + · · ·

= 1

z

{
1 + Aν

z
+ (Aν)2

2!z2 + · · · + (Aν)n

n!zn
+ · · ·

}
= eAν/zz−1. �

Proposition 2. Consider the parabolic differential equation

Pt = (axP)xx − ((bx + h)P)x, 0 < x < ∞, (A.1)

where a, b, h are constants, 0 < h < a, then the Laplace transformation of f (t, x, x0) with respect to x takes the
form

w(t, s; x0) =
∫ ∞

0
e−sxf (t, x; x0) dx =

(
b

sa(ebt − 1) + b

)h/a

× exp

{
−sbx0 ebt

sa(ebt − 1) + b

}
Γ

(
1 − h

a
;

b2x0 ebt

a(ebt − 1)(sa(ebt + 1) + b)

)
, (A.2)

where Γ (n; z) = Γ −1(n)
∫ z

0 e−xxn−1 dx.

Proof. The proof of (A.2) is referred to Lemma 7 of Feller [7]. �
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We now turn to prove (6). From (A.2), let

A = bx0

a(1 − e−bt)
and z = 1

b
(sa(ebt − 1) + b).

The w(t, s; x0) in (A.2) can be rewritten as

w(t, s; x0) = z−h/a e−(1−1/z)A

Γ (1 − h/a)

∫ A/z

0
e−xx−h/a dx = z−h/a e−(1−1/z)A

Γ (1 − h/a)

∫ 1

0
e−Ax′/z(Ax′/z)−h/a(A/z)1−h/a dx′

= A1−h/a e−A

Γ (1 − h/a)

∫ 1

0
eA(1−x′)/z(x′)−h/a

z−1 dx′ = A1−h/a e−A

Γ (1 − h/a)

∫ 1

0
eAν/z(1 − ν)−h/az−1 dν. (A.3)

By Proposition 1 now that f (z) = eAν/zz−1 is the Laplace transformation of I0(2(Aνx)1/2) and by the Fubini
theorem, we have

w(t, s; x0) = A1−h/a e−A

Γ (1 − h/a)

∫ 1

0
(1 − ν)−h/a

[∫ ∞

0
e−zxI0(2(Aνx)1/2) dx

]
dν

= A1−h/a e−A

Γ (1 − h/a)

∫ ∞

0

∫ 1

0
(1 − ν)−h/a e−zxI0(2(Aνx)1/2) dx dν

= A2−h/a e−A

Γ (1 − h/a)x0ebt

∫ ∞

0

∫ 1

0
(1 − ν)−h/a e−sx′

e−Ax′/(x0 ebt ) × I0(2A(e−btνx′/x0)
1/2

) dν dx′. (A.4)

Hence, upon comparing the two formulae for w(t, s; x0) and by the monotone convergence theorem, we have

f (t, x; x0) = b

Γ (1 − h/a)a(ebt − 1)

[
bx0

a(ebt − 1)

]1−h/a

× exp

{
−b(x + x0 ebt)

a(ebt − 1)

}∫ 1

0
(1 − ν)−h/aI0

(
2b(e−btνxx0)

1/2

a(1 − e−bt)

)
dν

= b

Γ (1 − h/a)a(ebt − 1)

[
bx0

a(ebt − 1)

]1−h/a

× exp

{
−b(x + x0ebt)

a(ebt − 1)

}∫ 1

0
(1 − ν)−h/a

∞∑
r=0

[b(e−btνxx0)
1/2

/(a(1 − e−bt))]
2r

r!Γ (r + 1)
dν

= b

Γ (1 − h/a)a(ebt − 1)

[
bx0

a(ebt − 1)

]1−h/a

× exp

{
−b(x + x0 ebt)

a(ebt − 1)

} ∞∑
r=0

[b(e−btxx0)
1/2

/(a(1 − e−bt))]
2r

r!Γ (r + 1)

∫ 1

0
(1 − ν)−h/aνr dν

= b

Γ (1 − h/a)a(ebt − 1)

[
bx0

a(ebt − 1)

]1−h/a

× exp

{
−b(x + x0 ebt)

a(ebt − 1)

} ∞∑
r=0

[b(e−btxx0)
1/2

/(a(1 − e−bt))]
2r

r!Γ (r + 1)

Γ (r + 1)Γ (1 − h/a)

Γ (r + 1 + 1 − h/a)

= b

a(ebt − 1)

(
e−btx

x0

)(h−a)/2a

exp

{
−b(x + x0ebt)

a(ebt − 1)

}
I1−h/a

(
2b

a(1 − ebt)
(e−btxx0)

1/2
)

. (A.5)

This completes the proof.
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