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Abstract— This paper studies the portfolio optimization prob-
lem when the investor’s utility is general and the return and
volatility of the risky asset are fast mean-reverting, which are
important to capture the fast-time scale in the modeling of
stock price volatility. Motivated by the heuristic derivation in
[J.-P. Fouque, R. Sircar and T. Zariphopoulou, Mathematical
Finance, 2016], we propose a zeroth order strategy, and show
its asymptotic optimality within a specific (smaller) family of
admissible strategies under proper assumptions. This optimality
result is achieved by establishing a first order approximation
of the problem value associated to this proposed strategy
using singular perturbation method, and estimating the risk-
tolerance functions. The results are natural extensions of our
previous work on portfolio optimization in a slowly varying
stochastic environment [J.-P. Fouque and R. Hu, SIAM Journal
on Control and Optimization, 2017], and together they form a
whole picture of analyzing portfolio optimization in both fast
and slow environments.

Index Terms— Stochastic optimal control, asset allocation,
stochastic volatility, singular perturbation, asymptotic optimal-
ity.

I. INTRODUCTION

The portfolio optimization problem in continuous time,
also known as the Merton problem, was firstly studied in
[17], [18]. In his original work, explicit solutions on how
to allocate money between risky and risk-less assets and/or
how to consume wealth are provided so that the investor’s
expected utility is maximized, when the risky assets follows
the Black–Scholes (BS) model and the utility is of Constant
Relative Risk Aversion (CRRA) type. Since these seminal
works, lots of research has been done to relax the original
model assumptions, for example, to allow transaction cost
[16], [10], drawdown constraints [9], [4], [5], price impact
[3], and stochastic volatility [20], [2], [8] and [15].

Our work extends Merton’s model by allowing more
general utility, and by modeling the return and volatility of
the risky asset St by a fast mean-reverting process Yt:

dSt = µ(Yt)St dt+ σ(Yt)St dWt, (1)

dYt =
1

ε
b(Yt) dt+

1√
ε
a(Yt) dWY

t . (2)

The two standard Brownian motion (Bm) are imperfectly
correlated: d

〈
W,WY

〉
= ρ dt, ρ ∈ (−1, 1). We are

interested in the terminal utility maximization problem

V ε(t, x, y) ≡ sup
π∈Aε

E[U(Xπ
T )|Xπ

t = x, Yt = y], (3)
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where Xπ
t is the wealth associated to self-financing π:

dXπ
t = π(t,Xπ

t , Yt)µ(Yt) dt+π(t,Xπ
t , Yt)σ(Yt) dWt, (4)

(assume the risk-free interest rate varnishes r = 0) and Aε is
the set of strategies that Xπ

t stays nonnegative. Using singu-
lar perturbation technique, our work provide an asymptotic
optimal strategy π(0) within a specific class of admissible
strategies Aε0 that satisfies certain assumptions:

Aε0
[
π̃0, π̃1, α

]
=
{
π̃0 + εαπ̃1

}
0≤ε≤1 . (5)

Motivation and Related Literature. The reason to study
the proposed problem is threefold. Firstly, in the direction
of asset modeling (1)-(2), the well-known implied volatility
smile/smirk phenomenon leads us to employ a BS-like
stochastic volatility model. Empirical studies have identified
scales in stock price volatility: both fast-time scale on the
order of days and slow-scale on the order of months [7].
This results in putting a parameter ε in (2). The slow-scale
case (corresponding to large ε in (2)), which is particularly
important in long-term investments, has been studied in
our previous work [6]. An asymptotic optimality strategy is
proposed therein using regular perturbation techniques. This
makes it natural to extend the study to fast-varying regime,
where one needs to use singular perturbation techniques.
Secondly, in the direction of utility modeling, apparently not
everyone’s utility is of CRRA type [1], therefore it is impor-
tant to consider to work under more general utility functions.
Thirdly, although it is natural to consider multiscale factor
models for risky assets, with a slow factor and a fast factor
as in [8], more involved technical calculation and proof are
required in combining them, and thus, we leave it to another
paper in preparation [11].

Our proposed strategy π(0) is motivated by the heuristic
derivation in [8], where a singular perturbation is performed
to the PDE satisfied by V ε. This gave a formal approximation
V ε = v(0)+

√
εv(1)+εv(2)+ · · · . They then conjectured that

the zeroth order strategy

π(0)(t, x, y) = −λ(y)

σ(y)

v
(0)
x (t, x, y)

v
(0)
xx (t, x, y)

, λ(y) =
µ(y)

σ(y)
(6)

reproduces the optimal value up to the first order v(0) +√
εv(1), with v(0) and v(1) given by (11) and (13).
Main Theorem. Let V π

(0),ε (resp. Ṽ ε) be the expected
utility of terminal wealth associated to π(0) (resp. π ∈ Aε0):
V π

(0),ε := E[U(Xπ(0)

t )|Xπ(0)

t = x, Yt = y], and Xπ(0)

t be
the wealth process given by (4) with π = π(0) (resp. π
in Aε0). By comparing V π

(0),ε and Ṽ ε, we claim that π(0)
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performs asymptotically better up to order
√
ε than the family{

π̃0 + εαπ̃1
}

. Mathematically, this is formulated as:
Theorem 1.1: Under assumptions detailed in Sections II

and IV, for any family of trading strategies Aε0
[
π̃0, π̃1, α

]
=

{π̃0 + εαπ̃1}0≤ε≤1, the following limit exists and satisfies

` := lim
ε→0

(
Ṽ ε(t, x, y)− V π

(0),ε(t, x, y))/
√
ε ≤ 0.

Proof will be given in Section IV as well as the interpreta-
tions of this inequality according to different α’s. Our main
theorem gives some insights on how to construct expansion
of the optimal π, which, however, is still an open question.
We remark that, in a related work [19], expansion results for
π∗ exist under a discrete-time filtering setting.

The rest of the paper is organized as follows. Section II
introduces some preliminaries of the Merton problem and
standing assumptions in this paper. Section III gives V π

(0),ε’s
first order approximation v(0) +

√
εv(1). Section IV is ded-

icated to the proof of Theorem 1.1. The expansion of Ṽ ε

is analyzed first, with precise derivations, while the detailed
technical assumption is referred to our recent work [6].

II. PRELIMINARIES AND ASSUMPTIONS

In this section, we firstly review the classical Merton prob-
lem, and the notation of risk tolerance function R(t, x;λ).
Then heuristic expansion results of V ε in [8] are summarized.
Standing assumptions of this paper are listed, as well as some
estimations regarding R(t, x;λ) and v(0). We refer to our
recent work [6, Section 2, 3] for proofs of all these results.

We shall first consider the case of constant µ and σ in
(1). This is the classical Merton problem, which plays a
crucial role in interpreting the leading order term v(0) and
analyzing the singular perturbation. This problem has been
studied intensively, for instance, in [13]. Let Xt be the wealth
process in this case. Using the notation in [8], we denote
by M(t, x;λ) the problem value. In Merton’s original work,
closed-form M(t, x;λ) was obtained when the utility U(·) is
of power type. In general, one has the following results, with
proofs given in [6, Section 2.1] or the references therein.

Proposition 2.1: Assume that the utility function U(x)
is C2(0,∞), strictly increasing, strictly concave, such that
U(0+) is finite, and satisfies the Inada and Asymptotic
Elasticity conditions: U ′(0+) = ∞, U ′(∞) = 0, AE[U ] :=

limx→∞ xU
′(x)
U(x) < 1, then, the Merton value function

M(t, x;λ) is strictly increasing, strictly concave in the
wealth variable x, and decreasing in the time variable t. It is
C1,2([0, T ]×R+) and is the unique solution to the Hamilton-
Jacobi-Bellman(HJB) equation, with M(T, x;λ) = U(x),

Mt + sup
π

{
σ2

2
π2Mxx + µπMx

}
= 0, (7)

where λ = µ
σ is the Sharpe ratio. It is C1 w.r.t λ, and the

optimal strategy is given by π?(t, x;λ) = −λσ
Mx(t,x;λ)
Mxx(t,x;λ)

.

We next define the risk-tolerance function R(t, x;λ) =

− Mx(t,x;λ)
Mxx(t,x,;λ)

, and operators following the notations in [8],

Dk = R(t, x;λ)k∂kx , Lt,x(λ) = ∂t+
1

2
λ2D2+λ2D1. (8)

By the concavity of M(t, x;λ), R(t, x;λ) is continuous and
strictly positive. Using the relation D1M = −D2M , the non-
linear Merton PDE (7) can be re-written in a “linear” way:
Lt,x(λ)M(t, x;λ) = 0. We now mention a uniqueness result
to this PDE, which will be used repeatedly in Sections III.

Proposition 2.2: Let Lt,x(λ) be the operator defined in
(8), and assume that the utility function U(x) satisfies the
conditions in Proposition 2.1, then

Lt,x(λ)u(t, x;λ) = 0, u(T, x;λ) = U(x), (9)

has a unique nonnegative solution.
Next, we review the formal expansion results of V ε

derived in [8]. To apply singular perturbation technique, we
assume that the process Y (1)

t
D
= Ytε is ergodic and equipped

with a unique invariant distribution Φ. We use the notation
〈·〉 for averaging w.r.t. Φ, namely, 〈f〉 =

∫
f dΦ. Let L0 be

the infinitesimal generator of Y (1): L0 = 1
2a

2(y)∂2y+b(y)∂y.
Then, by dynamic programming principle, the value function
V ε solves the HJB equation in the viscosity sense:

V εt +
1

ε
L0V

ε + max
π∈Aε

(
σ(y)2π2V εxx/2

+ π
(
µ(y)V εx + ρa(y)σ(y)V εxy/

√
ε
))

= 0. (10)

and its regularity is not clear. In [8], a unique classical
solution is assumed in order to perform heuristic derivations.
Moreover, the optimizer in (10) is well-defined: π∗ =

− λ(y)V εx
σ(y)V εxx

− ρa(y)V εxy√
εσ(y)V εxx

, and the simplified HJB equation

reads: V εt + 1
εL0V

ε−
(
λ(y)V εx + 1√

ε
ρa(y)V εxy

)2
/(2V εxx) =

0, for (t, x, y) ∈ [0, T ]×R+×R. We remark that, to obtain
our Theorem (1.1), the smooth condition is not needed, as we
focus on the quantity V π

(0),ε defined in (16). It corresponds
to a linear PDE, for which classical solutions exist.

The equation (10) is fully nonlinear and is only explicitly
solvable in some cases; see [2] for instance. The heuristic ex-
pansions overcome this by providing approximations to V ε.
This is done by the so-called singular perturbation method,
as often seen in homogenization theory. To be specific, one
substitutes the expansion V ε = v(0) +

√
εv(1) + εv(2) + · · ·

into the above equation, establishes equations about v(k) by
collecting terms of different orders. In [8, Section 2], this is
performed for k = 0, 1 and we list their results as follows:

(i) The leading order term v(0)(t, x) is defined as the so-
lution to the Merton PDE associated with the averaged
Sharpe ratio λ =

√
〈λ2〉:

v
(0)
t −

1

2
λ
2

(
v
(0)
x

)2
v
(0)
xx

= 0, v(0)(T, x) = U(x), (11)

and by Proposition 2.1 v(0) is identified as:

v(0)(t, x) = M
(
t, x;λ

)
. (12)

(ii) The first order correction v(1) is identified as the
solution to the linear PDE:

v
(1)
t +

λ
2

2
(
v
(0)
x

v
(0)
xx

)2v(1)xx−λ
2 v

(0)
x

v
(0)
xx

v(1)x =
ρ

2
BD2

1v
(0), (13)
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with v(1)(T, x) = 0. The constant B = 〈λaθ′〉, and
θ(y) solves L0θ(y) = λ2(y) − λ

2
. Rewrite equation

(13) in terms of the operators in (8), v(1) solves the
following PDE which admits a unique solution:

Lt,x(λ)v(1) =
1

2
ρBD2

1v
(0), v(1)(T, x) = 0. (14)

(iii) v(1) is explicitly given in term of v(0) by v(1)(t, x) =
− 1

2 (T − t)ρBD2
1v

(0)(t, x).

Now we introduce the assumptions on the utility U(·) and
the state processes (St, X

π(0)

t , Yt), and refer to [6, Section 2]
for further discussions and remarks.

Assumption 2.3: Throughout the paper, we make the fol-
lowing assumptions on the utility U(x):

(i) U(x) is C7(0,∞), strictly increasing, strictly concave
and satisfying the following conditions: U ′(0+) =

∞, U ′(∞) = 0, AE[U ] := limx→∞ xU
′(x)
U(x) < 1.

(ii) U(0+) is finite. Without loss of generality, U(0+) = 0.
(iii) Denote by R(x) the risk tolerance, R(x) := − U ′(x)

U ′′(x) .

Assume that R(0) = 0, R(x) is strictly increasing and
R′(x) <∞ on [0,∞), and there exists K ∈ R+, such
that for x ≥ 0, and 2 ≤ i ≤ 5,∣∣∂ixRi(x)

∣∣ ≤ K. (15)

(iv) Define the inverse function of the marginal utility U ′(x)
as I : R+ → R+, I(y) = U ′(−1)(y), and assume
that, for some positive α, I(y) satisfies the polynomial
growth condition: I(y) ≤ α+ κy−α.

Assumption 2.3(ii) is a sufficient condition, and rules out
the cases U(x) = xγ

γ , γ < 0, and U(x) = log(x). However,
all theorems in the paper still hold, as it is to ensure that terms
in (18) are of the form (19), which is automatically satisfied
for aforementioned cases. Next are the model assumptions.

Assumption 2.4: We make the following assumptions on
the state processes (St, X

π(0)

t , Yt):
(i) For any starting points (s, y) and fixed ε, the system

of SDEs (1)–(2) has a unique strong solution (St, Yt).
The functions λ(y) and a(y) have polynomial growth.

(ii) The process Y (1) with infinitesimal generator L0 is
ergodic with a unique invariant distribution, and ad-
mits moments of any order uniformly in t ≤ T :

supt≤T

{
E
∣∣∣Y (1)
t

∣∣∣k} ≤ C(T, k). The solution φ(y)

of the Poisson equation L0φ = g is assumed to be
polynomial for polynomial functions g.

(iii) The wealth process Xπ(0)

· is in L2([0, T ]×Ω) uniformly

in ε , i.e., E(0,x,y)

[∫ T
0

(
Xπ(0)

s

)2
ds

]
≤ C2(T, x, y),

where C2(T, x, y) is independent of ε and E(0,x,y)[·] =
E[·|X0 = x, Y0 = y].

Here we provide several estimations of the risk tolerance
function R(t, x;λ) and the zeroth order value function v(0),
which are crucial in the proof of Theorem 3.1.

By Proposition 2.1 and the relation (12), v(0) is concave
in the wealth variable x, and decreasing in the time variable
t, therefore has a linear upper bound, for (t, x) ∈ [0, T ] ×

R+: v(0)(t, x) ≤ v(0)(0, x) ≤ c + x, for some constant c.
Combining it with Assumption 2.4(iii), we deduce:

Lemma 2.5: Under Assumption 2.3 and 2.4, the process
v(0)(·, Xπ(0)

· ) is in L2([0, T ] × Ω) uniformly in ε, i.e.

∀(t, x) ∈ [0, T ] × R+: E(t,x)

[∫ T
t

(
v(0)(s,Xπ(0)

s )
)2

ds

]
≤

C3(T, x), where v(0)(t, x) satisfies equation (11).
Proposition 2.6: Suppose the risk tolerance R(x) =

− U ′(x)
U ′′(x) is strictly increasing for all x in [0,∞) (this is part

of Assumption 2.3 (iii)), then, for each t ∈ [0, T ), R(t, x;λ)
is strictly increasing in the wealth variable x.

Proposition 2.7: Under Assumption 2.3, the risk tolerance
function R(t, x;λ) satisfies: ∀0 ≤ j ≤ 4, ∃Kj > 0, such that
∀(t, x) ∈ [0, T )× R+,

∣∣Rj(t, x;λ)
(
∂j+1
x R(t, x;λ)

)∣∣ ≤ Kj .

Or equivalently, ∀1 ≤ j ≤ 5, there exists K̃j > 0, such that∣∣∂jxRj(t, x;λ)
∣∣ ≤ K̃j . Moreover, one has R(t, x;λ) ≤ K0x.

III. PORTFOLIO PERFORMANCE OF A GIVEN STRATEGY

Recall the strategy π(0) defined in (6), and assume π(0)

is admissible. In this section, we are interested in studying
its performance. That is, to give approximation results of the
value function associated to π(0), denote by V π

(0),ε:

V π
(0),ε(t, x, y) = E

{
U(Xπ(0)

T )|Xπ(0)

t = x, Yt = y
}
, (16)

where U(·) is a general utility function satisfying Assump-
tion 2.3, Xπ(0)

t is the wealth process associated to the strategy
π(0) and Yt is the fast factor. Our main result of this section
is the following, with the proof delayed in Section III-B.

Theorem 3.1: Under assumptions 2.3 and 2.4, the residual
function E(t, x, y) defined by E(t, x, y) := V π

(0),ε(t, x, y)−
v(0)(t, x) −

√
εv(1)(t, x), is of order ε. In other words,

∀(t, x, y) ∈ [0, T ] × R+ × R, E(t, x, y) ≤ Cε, for some
constant C depending on (t, x, y) but not on ε.

Corollary 3.2: In the case of power utility U(x) = xγ

γ ,
π(0) is asymptotically optimal in Aε(t, x, y) up to order

√
ε.

Proof: This is obtained by comparing expansions of
V ε given in [8, Corollary 6.8], and of V π

(0),ε from the
above Theorem. Since both quantities have the approxima-
tion v(0) +

√
εv(1) at order

√
ε, we have the desired result.

A. Formal expansion of V π
(0),ε

In the following derivation, to condense the notation, we
use R for R(t, x;λ), and π(0) for π(0)(t, x, y) given in (6).

By the martingale property, V π
(0),ε solves the linear

PDE: V π
(0),ε

t + π(0)µ(y)V π
(0),ε

x + π(0)
√
ε
ρa(y)σ(y)V π

(0),ε
xy +

1
εL0V

π(0),ε + 1
2σ

2(y)
(
π(0)

)2
V π

(0),ε
xx = 0. Define two

operators L1 and L2 by L1 = ρa(y)σ(y)π(0)∂xy =

ρa(y)λ(y)R(t, x;λ)∂xy , and L2 = ∂t+
1
2σ

2(y)
(
π(0)

)2
∂2x+

µ(y)π(0)∂x = ∂t + 1
2λ

2(y)D2 + λ2(y)D1 respectively, then
this linear PDE can be rewritten as:(

L2 + L1/
√
ε+ L0/ε

)
V π

(0),ε = 0. (17)

We look for an expansion of V π
(0),ε of the form

V π
(0),ε = vπ

(0),(0) +
√
εvπ

(0),(1) + εvπ
(0),(2) + · · · , with
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vπ
(0),(0)(T, x, y) = U(x) and vπ

(0),(k)(T, x, y) = 0, for
k ≥ 1. Inserting the above expansion of V π

(0),ε into (17),
and collecting terms of O( 1

ε ) and O( 1√
ε
) give: L0v

π(0),(0) =

0, L0v
π(0),(1) + L1v

π(0),(0) = 0. Since L0 and L1 are
operators taking derivatives in y, we make the choice that
vπ

(0),(0) and vπ
(0),(1) are independent of y. Next, collecting

terms of O(1) yields L0v
π(0),(2) + L2v

π(0),(0) = 0, whose
solvability condition requires that

〈
L2v

π(0),(0)
〉

= 0. This

leads to a PDE for vπ
(0),(0): vπ

(0),(0)
t + 1

2λ
2

(R)
2
v
π(0),(0)
xx +

λ
2
Rv

π(0),(0)
x = 0, vπ

(0),(0)(T, x) = U(x), which has a
unique solution (c.f. Proposition 2.2). Since v(0) also solves
this equation, we deduce that vπ

(0),(0)(t, x) ≡ v(0)(t, x) =

M(t, x;λ), and vπ
(0),(2) admits a solution vπ

(0),(2)(t, x, y) =
− 1

2θ(y)D1v
(0) + C1(t, x), with θ(y) given by L0θ(y) =

λ2(y)− λ2 and Dk in (8).
Then, collecting terms of order

√
ε yields L2v

π(0),(1) +

L1v
π(0),(2) + L0v

π(0),(3) = 0, and the solvability condition
reads

〈
L2v

π(0),(1) + L1v
π(0),(2)

〉
= 0. This gives an equa-

tion satisfied by vπ
(0),(1): vπ

(0),(1)
t + 1

2λ
2

(R)
2
v
π(0),(1)
xx +

λ
2
Rv

π(0),(1)
x − 1

2ρBD
2
1v

(0) = 0, vπ
(0),(1)(T, x) = 0, which

is exactly equation (13). This equation is uniquely solved
by v(1) (see (14)). Thus, we obtain vπ

(0),(1) ≡ v(1) =
− 1

2 (T − t)ρBD2
1v

(0).
Using the solution of vπ

(0),(1) and vπ
(0),(2) we just iden-

tified, one deduces an expression for vπ
(0),(3): vπ

(0),(3) =
1
2 (T − t)θ(y)ρB

(
1
2D2 +D1

)
D2

1v
(0) + 1

2ρθ1(y)D2
1v

(0) +
C2(t, x), where θ1(y) is the solution to the Poisson equation:
L0θ1(y) = a(y)λ(y)θ′(y)− 〈aλθ′〉 .

B. First order accuracy: proof of Theorem 3.1
This section completes the proof of Theorem 3.1, which

shows the residual function E(t, x, y) is of order ε. To this
end, we define the auxiliary residual function Ẽ(t, x, y) by
Ẽ = V π

(0),ε − (v(0) + ε1/2v(1) + εvπ
(0),(2) + ε3/2vπ

(0),(3)),
where we choose C1(t, x) = C2(t, x) ≡ 0 in the expression
of vπ

(0),(2) and vπ
(0),(3). Then, it remains to show Ẽ ∼ ε.

According to the derivation in Section III-A, the auxil-
iary residual function Ẽ solves

(
1
εL0 + 1√

ε
L1 + L2

)
Ẽ +

ε(L1v
π(0),(3) + L2v

π(0),(2)) + ε3/2L2v
π(0),(3) = 0, with

a terminal condition Ẽ(T, x, y) = −εvπ(0),(2)(T, x, y) −
ε3/2vπ

(0),(3)(T, x, y). Note that 1
εL0 + 1√

ε
L1 + L2 is the

infinitesimal generator of the processes
(
Xπ(0)

t , Yt

)
, one

applies Feynman-Kac formula and deduces:

Ẽ(t, x, y) = εE(t,x,y)

[∫ T

t

L1v
π(0),(3)(s,Xπ(0)

s , Ys) ds

]
+ εE(t,x,y)

[∫ T

t

L2v
π(0),(2)(s,Xπ(0)

s , Ys) ds

]
+ ε3/2E(t,x,y)

[∫ T

t

L2v
π(0),(3)(s,Xπ(0)

s , Ys) ds

]
− εE(t,x,y)

[
vπ

(0),(2)(T,Xπ(0)

T , YT )
]

− ε3/2E(t,x,y)

[
vπ

(0),(3)(T,Xπ(0)

T , YT )
]
. (18)

The first three expectations come from the source terms
while the last two come from the terminal condition. We
shall prove that each expectation above is uniformly bounded
in ε. The idea is to relate them to the leading order term v(0)

and the risk-tolerance function R(t, x;λ), where some nice
properties and estimates are already established in Section II.

For the source terms, straightforward but tedious compu-
tations give:

L2v
π(0),(2)

= −
1

4
θ(y)

(
λ
2
(y) − λ2

)
D

2
1v

(0)
,

L1v
π(0),(3)

=
1

2
ρ
2
a(y)λ(y)θ

′
1(y)D

3
1v

(0)
+

1

2
(T − t)ρ2Ba(y)λ(y)θ′(y)D1

[ 1

2
D2 +D1

]
D

2
1v

(0)
,

L2v
π(0),(3)

=
1

4
ρθ1(y)

(
λ
2
(y) − λ2

)
D

3
1v

(0)

+
1

2
θ(y)ρB

{
−

[ 1

2
D2 +D1

]
D

2
1v

(0)
+

1

2
(T − t)

(
λ
2
(y) − λ2

)
D

4
1v

(0)
}

+
1

4
θ(y)ρB(T − t)

×
[ 1

2

(
λ
2
(y) − λ2

)
D2D

3
1v

(0) − λ2(y)RRxx(D2 +D1)D
2
1v

(0)
]
,

where in the computation of L2v
π(0),(3), we use the commu-

tator between operators D2 and L2: [L2, D2]w = L2D2w−
D2L2w = −λ2(y)R2Rxx(Rwxx+wx). At terminal time t =

T , they become vπ
(0),(2)(T, x, y) = − 1

2θ(y)D1v
(0)(T, x)

and vπ
(0),(3)(T, x, y) = 1

2ρθ1(y)BD2
1v

(0)(T, x).
Note that the quantity RRxx(t, x;λ) is bounded by a

constant K. This is proved for (t, x;λ) ∈ [0, T )×R+×R in
Proposition 2.7, and guaranteed by Assumption 2.3(iii) for
t = T , since by definition R(T, x;λ) = R(x). Therefore,
the expectations related to the source terms in (18) are sum
of terms of the following form:

E(t,x,y)

[∫ T

t

h(Ys)Dv(0)(s,Xπ(0)

s ) ds

]
, (19)

where h(y) is at most polynomially growing, and
Dv(0) is one of the following: D2

1v
(0), D3

1v
(0),

D4
1v

(0), D1D2D
2
1v

(0), D2D
2
1v

(0), D2D
3
1v

(0).
Applying Cauchy-Schwartz inequality, it becomes

E1/2
(t,y)

[∫ T
t
h2(Ys) ds

]
E1/2
(t,x,y)

[∫ T
t

(
Dv(0)(s,Xπ(0)

s )
)2

ds

]
.

The first part is uniformly bounded in ε since Yt admits
bounded moments at any order (cf. Assumption 2.4(ii)).
It remains to show the second part is also uniformly
bounded in ε. The proof consists a repeated use of the
concavity of v(0) and the results in Proposition 2.7 and
Lemma 2.5. For the sake of simplicity, we shall only
detail the proof when Dv(0) = D2

1v
(0) and omit the rest.

Since
∣∣D2

1v
(0)
∣∣ =

∣∣∣RRxv(0)x −Rv(0)x ∣∣∣ ≤ (K0 + 1)Rv
(0)
x ≤

(K0 + 1)K0xv
(0)
x ≤ K0(K0 + 1)v(0), we conclude

E(t,x,y)

[∫ T

t

(
D2

1v
(0)(s,Xπ(0)

s , Ys)
)2

ds

]
≤ K2

0 (K0 + 1)2E(t,x,y)

[∫ T

t

(
v(0)(s,Xπ(0)

s )
)2

ds

]
is uniformly bounded in ε by Lemma 2.5. Straightforward
but tedious computations show that the rest terms in (19) are
also bounded by multiples of Rv(0), then the boundedness
is again ensured by the relation R(t, x;λ) ≤ K0x, the
concavity of v(0), and Lemma 2.5.
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The last two expectations in (18) are treated similarly by
using Assumption 2.3 (15) and the concavity of U(x). There-
fore we have shown that

∣∣∣Ẽ(t, x, y)
∣∣∣ ≤ C̃ε. By the inequality

|E(t, x, y)| ≤ C̃ε+εvπ(0),(2)(t, x, y)+ε3/2vπ
(0),(3)(t, x, y) ≤

Cε, we obtain the desired result.

IV. THE ASYMPTOTIC OPTIMALITY OF π(0)

We now show that the strategy π(0) defined in (6)
asymptotically outperforms every family Aε0

[
π̃0, π̃1, α

]
as

precisely stated in our main Theorem 1.1 in Section I.
For a fixed choice of (π̃0, π̃1) and positive α, recall

the definition of Aε0
[
π̃0, π̃1, α

]
in (5). Working with Aε0 is

motivated by the following. The optimal control to problem
(3), whose existence is ensured by [14], clearly depends on
ε. It is not known whether π∗ will converge as ε goes to zero.
But if ε had a limit, say π̃0, it is then natural to consider a
family of controls of the form π̃0 + εαπ̃1 as the perturbation
of the limit π̃0. We think the subset Aε0 is not so small
comparing to the full one Aε, as we only restrict α > 0,
which allows for correction of any order in ε.

Assumption 4.1: For the triplet (π̃0, π̃1, α), we require:
(i) The whole family of strategies {π̃0 + εαπ̃1}ε≤1 ∈ Aε ;

(ii) Let (X̃t,x
s )t≤s≤T be the solution to: dX̃s =〈

µ(·)π̃0(s, X̃s, ·)
〉
ds+

√〈
σ2(·)π̃0(s, X̃s, ·)2

〉
dWs, start-

ing at x at time t. By (i), X̃t,x
s ≥ 0. We further assume

that it has full support R+ for any t < s ≤ T .
Remark 4.2: Part (ii) is motivated as follows. Con-

sider dX̂s = 〈µπ(0)〉ds + 〈σ2π(0)2〉 12 dWs. Noticing that〈
µ(·)π(0)(t, x, ·)

〉
= λ

2
R(t, x;λ),

√〈
σ2(·)π(0)(t, x, ·)2

〉
=

λR(t, x;λ), then X̂s can be interpreted as the optimal wealth
process of the classical Merton problem with averaged
Sharpe-ratio λ. From [12, Proposition 7], one has X̂t,x

s =

H
(
H−1(x, t, λ) + λ

2
(s− t) + λ(Ws −Wt), s, λ

)
, where

H : R × [0, T ] × R → R+ solves the heat equation
Ht + 1

2λ
2
Hxx = 0, and is of full range in x. Consequently,

X̂t,x
s has full support R+, and thus, it is natural to require

that X̃t,x
s has full support R+.

Denote by Ṽ ε the value function associated to the trading
strategy π := π̃0 + εαπ̃1 ∈ Aε0

[
π̃0, π̃1, α

]
:

Ṽ ε(t, x, y) = E [U(Xπ
T )|Xπ

t = x, Yt = y] , (20)

where Xπ
t is the wealth process following the strategy π ∈

Aε0, and Yt is fast mean-reverting with the same ε. The idea
is to compare Ṽ ε with V π

(0),ε defined in (16), for which a
rigorous first order approximation v(0) +

√
εv(1) has been

established in Theorem 3.1. After finding the expansion of
Ṽ ε, the comparison is done asymptotically in ε up to O(

√
ε).

Approximations of the Value Function Ṽ ε. Denote by L the
infinitesimal generator of the state processes (Xπ

t , Yt): L :=
1
εL0 + 1

2σ
2(y)

(
π̃0 + εαπ̃1

)2
∂xx +

(
π̃0 + εαπ̃1

)
µ(y)∂x +

1√
ε
ρa(y)σ(y)

(
π̃0 + εαπ̃1

)
∂xy, then by the martingale prop-

erty, the value function Ṽ ε defined in (20) satisfies

∂tṼ
ε + LṼ ε = 0, Ṽ ε(T, x, y) = U(x). (21)

Motivate by the fact that the first order in the operator L is
εα, we propose the following expansion form for Ṽ ε Ṽ ε =
ṽ(0)+εαṽ1α+ε2αṽ2α+ · · ·+εnαṽnα+

√
ε ṽ(1)+ · · · , where

n is the largest integer such that nα < 1/2, and for the case
α > 1/2, n is simply zero. In the derivation, we aim at
identifying the zeroth order term ṽ(0) and the first non-zero
term up to O(

√
ε). Apparently, the term following ṽ(0) will

depend on the value of α.
To further simplify the notation, we decompose ∂t + L

according to different powers of ε as follows: ∂t + L =
1
εL0 + 1√

ε
L̃1 + L̃2 + εαL̃3 + ε2αL̃4 + εα−1/2L̃5, where

the operators L̃i are defined by: L̃1 = π̃0ρ1a(y)σ(y)∂xy ,
L̃2 = ∂t + 1

2σ
2(y)

(
π̃0
)2
∂xx + π̃0µ(y)∂x, L̃3 =

σ2(y)π̃0π̃1∂xx + π̃1µ(y)∂x, L̃4 = 1
2σ

2(y)
(
π̃1
)2
∂xx and

L̃5 = π̃1ρ1a(y)σ(y)∂xy .
In all cases, we first collect terms of O(εβ) in (21) with

β ∈ [−1, 0). Noticing that L0 and L̃1 (also L̃5 when α <
1/2) take derivatives in y, we are able to make the choice
that the approximation of Ṽ ε up to O(εβ

′
) is independent of

y, for β′ < 1. In the following derivation, this choice is made
for every case, and consequently, we will not mention this
again and will start the argument by collecting terms ofO(1).
Different order of approximations are obtained depending on
π̃0 being identical to π(0) or not.

1) Case π̃0 ≡ π(0): We first analyze the case π̃0 ≡ π(0),
in which L̃1 and L̃2 coincide with L1 and L2, and L̃3v

(0) =
0. The terms of O(1) form a Poisson equation for ṽ(2)

L0ṽ
(2) + L2ṽ

(0) = 0, ṽ(0)(T, x) = U(x).

For different values of α, there might be extra terms which
are eventually zero, thus are not included in the above
equation: L1ṽ

(1) (all cases), L̃5ṽ
(0) when α = 1/2, and

L̃5ṽ
kα when (k + 1)α = 1/2. By the solvability condition,

ṽ(0) solves (9), which possesses a unique solution v(0).
Therefore, we deduce ṽ(0) ≡ v(0), and ṽ(2) ≡ vπ(0),(2).

(i) α = 1/2. We then collect terms of O(ε1/2):

L0ṽ
(3) + L2ṽ

(1) + L1ṽ
(2) + L̃3ṽ

(0) + L̃5ṽ
(1) = 0.

This is a Poisson equation for ṽ(3), for which the
solvability condition gives: ṽ(1) satisfies (14). Here we
have used L̃3ṽ

(0) = L̃3v
(0) = 0, ṽ(2) = vπ

(0),(2)

and L̃5ṽ
(1) = 0. This equation is uniquely solved, one

deduces ṽ(1) = v(1), and ṽ(3) ≡ vπ(0),(3).
(ii) α > 1/2. Collecting terms of O(

√
ε) yields a Poisson

equation for ṽ(3), L0ṽ
(3) +L2ṽ

(1) +L1ṽ
(2) + L̃5ṽ

(0) =
0, where the term L̃5ṽ

(0) only exists when α = 1
(but anyway L1ṽ

(1) and L̃5ṽ
(0) disappear due to their

independence of y). Arguments similar to the case
α = 1/2 give that ṽ(1) = v(1), and ṽ(3) = vπ

(0),(3).
(iii) α < 1/2. The next order is εα,

L0ṽ
α+1+L2ṽ

1α+L̃3ṽ
(0)+L1ṽ

α+1/2+L̃5ṽ
(1) = 0.

Again the last three terms disappear due to the fact
L̃3ṽ

(0) = L̃3v
(0) = 0, and ṽα+1/2 and ṽ(1)’s indepen-

dence of y. Then using solvability condition, ṽ1α solves
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Lt,x(λ)ṽ1α(t, x;λ) = 0, ṽ1α(T, x) = 0, which only
has the trivial solution ṽ1α ≡ 0. Consequently, we need
to identify the next non-zero term.
1/4 < α < 1/21/4 < α < 1/21/4 < α < 1/2. The next order is

√
ε, which gives

L0ṽ
(3) + L2ṽ

(1) + L1ṽ
(2) = 0. It coincides with (14)

after using the solvability condition, and we deduce
ṽ(1) ≡ v(1) and ṽ(3) ≡ vπ(0),(3).
α = 1/4α = 1/4α = 1/4. The next order is

√
ε, and the Pois-

son equation for ṽ(3) becomes L0ṽ
(3) + L2ṽ

(1) +
L1ṽ

(2) + L̃4ṽ
(0) = 0. The solvability condition reads

Lt,x(λ)ṽ(1) − 1
2ρBD

2
1v

(0) − 1
2λ

2
D1v

(0) = 0. Compar-
ing this equation with (14) and using the concavity of
v(0), one deduces ṽ(1) ≤ v(1).
α < 1/4α < 1/4α < 1/4. The next order is ε2α since 2α < 1/2, and
L0ṽ

2α+1 + L2ṽ
2α + L1ṽ

2α+1/2 + L̃3ṽ
1α + L̃4ṽ

(0) +
L̃5ṽ

α+1/2 = 0, ṽ2α(T, x) = 0. The third, fourth
and sixth terms varnish since ṽ1α ≡ 0, and ṽ2α+1/2

and ṽα+1/2 are independent of y. One has ṽ2αt +
1
2λ

2
R2ṽ2αxx+λRṽ2αx + 1

2

〈
σ2(·)

(
π̃1(t, x, ·)

)2〉
v
(0)
xx = 0,

by the solvablility condition. Assuming that π̃1 is not
identically zero, we claim ṽ2α < 0.

2) Case π̃0 6≡ π(0): In this case, after collect-
ing terms of O(1), and using the solvability condi-
tion, one has the following PDE for ṽ(0): ṽ

(0)
t +

1
2

〈
σ2(·)π̃0(t, x, ·)2

〉
ṽ
(0)
xx +

〈
π̃0(t, x, ·)µ(·)

〉
ṽ
(0)
x = 0. To

compare ṽ(0) to v(0), we rewrite (11) in the same pat-
tern: v(0)t + 1

2

〈
σ2(·)π̃0(t, x, ·)2

〉
v
(0)
xx +

〈
π̃0(t, x, ·)µ(·)

〉
v
(0)
x −

1
2

〈
σ2(·)

(
π̃0 − π(0)

)2
(t, x, ·)

〉
v
(0)
xx = 0, via the relation

−
〈
σ2(y)(π̃0 − π(0))π(0)

〉
v
(0)
xx =

〈
(π̃0 − π(0))µ(y)

〉
v
(0)
x .

Again by the strict concavity of v(0) and Feynman–Kac
formula, we obtain ṽ(0) < v(0).

To fully justify the above expansions, additional assump-
tions similar to [6, Appendix C] are needed. They are
technical uniform (in ε) integrability conditions on the strate-
gies Aε0[π̃0, π̃1, α]. For the sake of simplicity, we omit the
conditions here and refer to [6, Appendix C] for further
details. Now we summarize the above derivation as follows.

Proposition 4.3: Summary of the accuracy results:

TABLE I
ACCURAY OF APPROXIMATIONS OF Ṽ ε .

Case Value of α Approximation Accuracy
α ≥ 1/2 v(0) +

√
εv(1) O(ε)

π̃0 ≡ π(0) 1/4 < α < 1/2 O(ε2α)
α = 1/4 v(0) +

√
εṽ(1) O(ε3/4)

α < 1/4 v(0) + ε2αṽ2α O(ε3α∧(1/2))

π̃0 6≡ π(0) all ṽ(0) O(εα∧(1/2))

where the accuracy column gives the order of the difference
between Ṽ ε and its approximation. Moreover, when π̃0 ≡
π(0), we have the relation ṽ(1) ≤ v(1) if α = 1/4, and
ṽ2α < 0 if α < 1/4; while if π̃0 6≡ π(0), then ṽ(0) < v(0).

Asymptotic Optimality: Proof of Theorem 1.1. We now
give the proof of Theorem 1.1, via comparing the first
order approximation v(0) +

√
εv(1) of V π

(0),ε obtained in
Theorem 3.1, and the one of Ṽ ε summarized in Tab. I.

In the case that the approximation of Ṽ ε is v(0) +
√
εv(1),

the limit is easily verified to be zero. When the approxi-
mation of Ṽ ε is v(0) +

√
εṽ(1), the limit ` is non-positive

but stay finite, by the fact ṽ(1) ≤ v(1). If π̃0 ≡ π(0) and
α < 1/4, the limit ` is computed as ` = limε→0

(
ε2αṽ2α −√

εv(1) + O(ε3α∧1/2)
)
/
√
ε = −∞, since ṽ2α < 0. The

similar arguments also apply to the case π̃0 6≡ π(0), and lead
to ` = −∞. Thus we complete the proof. In fact, this limit
can be understood according to the following four cases:

(i) π̃0 ≡ π(0) and ` = 0: Ṽ ε = V π
(0),ε + o(

√
ε);

(ii) π̃0 ≡ π(0) and −∞ < ` < 0: Ṽ ε = V π
(0),ε + O(

√
ε)

with O(
√
ε) < 0;

(iii) π̃0 ≡ π(0) and ` = −∞: Ṽ ε = V π
(0),ε +O(ε2α) with

O(ε2α) < 0 and 2α < 1/2;
(iv) π̃0 6≡ π(0): lim

ε→0
Ṽ ε(t, x, z) < lim

ε→0
V π

(0),ε(t, x, z).
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