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“Let me try to explain to you, what to my taste is characteristic for all intelligent thinking. It is, that one is willing to study in depth an aspect of one’s subject matter in isolation for the sake of
its own consistency, all the time knowing that one is occupying oneself only with one of the aspects. 

We know that a program must be correct and we can study it from that viewpoint only; we also know that is should be efficient and we can study its efficiency on another day [. . .] But noth-
ing is gained—on the contrary—by tackling these various aspects simultaneously. It is what I sometimes have called “the separation of concerns’’ 

Edsger W. Dijkstra

Monte Carlo in Esperanto

Abstract: This article shows how a simple parser environment in Excel/VBA could be used to perform single and multi-dimensional Monte Carlo. The clsMathParser is a class
for math expression evaluation in Excel/VBA. We show that a host of vanilla and exotic derivatives can be priced easily in this framework. The parser allows separation of con-
cern and natural language expression of structured product payoffs. We provide test results for 1-dimensional and multi-dimensional options and sample spreadsheets.
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DSL’s are similar to high-level languages, they often allow us to
express in the operating lexicon of the problem domain, “mathematics”.
Although DSL remains an active area of research and it has been repeat-
edly shown to improve productivity and speed, DSL use remains rare.
Although many banks appear to have made custom ports of high-level
languages there is a disconnect between the model abstraction, concep-
tual basis and actual implementation.

In terms of high-level tools there are commercial products that pro-
vide a high-level language environment and “automagically” generate
and compile code for a target language environment based on a
domain-specific notation2. Although very promising, the average Quant
developer/Financial Engineer is not likely to use these tools.

3 Monte Carlo Method and Separation
of Concerns:

In this article we consider the Monte Carlo method for pricing Options,
and using a simple parser show that a host of different options can be
priced easily and with extensive reuse of our code. The approach utilizes
the clsMath parser environment in Excel.

A simple parser addition to your MC armory.

Krishna Kumar
Citigroup, New York, NY.

1 Introduction
Every few months there is a new thread on the Wilmott forum with a
new spin on the age-old computer language debate. Although the thread
title is different each time, C++ vs Fortran, Ada vs Java, the discussions
are typical of the debate: heated and inconclusive.

Language preferences and superiority of one environment over the
other are hard to decide. There has been an attempt in the past at bench-
marking languages using standardized test suites [1], and more recently
Bagley’s shootout1.

Today, there are about a dozen active programming languages in use,
of which C, C++ and Java seem to dominate the Street. But in terms of
reuse and rapid development tools there is much work still to be done.

2 Domain Specific Languages
Computer Scientists spend a significant amount of their time creating
languages that are specific to a problem domain (Domain Specific
Languages, or DSL’s). A DSL is a specific formal language that is formed
using a limited set of symbols with a set of predefined rules.

*I would like to thank Aaron Brown, Credit Risk Architecture, Morgan Stanley for his generous comments on a draft version of this article. I would also like to thank my col-
league Tom Gladd for his comments.
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Monte Carlo methods are extensively used in today’s environment,
and their popularity grows from their relative ease of use and an increase
in computational power or clock speed. Any earlier reluctance to use it
due to its slow convergence or a perceived inability to handle early exer-
cise has by now been overturned.3

The term “Monte Carlo” was first coined by Metropolis, Phelem Boyle
[2], was amongst the pioneers in applying it towards option pricing. The
recent books of Jackel [3] and Glasserman [4] are excellent references to
the method, besides Wilmott’s earlier tome [5].

Apart from its ease of implementation, Monte Carlo can be catego-
rized as an “embarrassingly parallel problem”, thus adding CPU’s or moving
the computation to a cluster will dramatically reduce computation time.
We also show here that computationally it allows us to do separation of
concerns4 in a natural way.

3.1 Monte carlo method in Brief
The Monte Carlo method works by generating random samples from a
domain and evaluating the function at these randomly generated points
to obtain a numerical integral estimate of the function. It is convenient
when the function is hard to evaluate analytically. The MC estimate of
the integral will then converge to the true value as the sample size
increases (this follows from the strong law of large numbers). We know
from Martingale Pricing theory that the price of a derivative security is
the expected value of the discounted payoff of the instrument under a
uniquely determined martingale measure, and for a payoff that is a func-
tion of the terminal value of a single underlying we have:

C(T) = e−rT

∫
ψ(z)f (z)dz

Here f (z) and ψ(z) are respectively the density of the underlying security
and Payoff of the derivative. And so in terms of implementation of the
Monte Carlo there are two aspects, the evolution of the underlying asset
price and the application of the payoff on this evolution. And this natu-
rally leads to a simple separation in the problem.

Consider the case of a simple European option that is exercised at
fixed time “T” we have the payoff as {S(T)-K}+ .

To price this option we have the evolution of the underlying governed
by the following SDE

dS(t)

S(t)
= r dt + σdW (t)

Now the solution of the above is

S(T) = S(0) exp

([
r − 1

2
σ 2

]
T + σW (T)

)

As W (T) is normally distributed with mean 0 and variance T this can be
written as

S(T) = S(0) exp

([
r − 1

2
σ 2

]
T + σ

√
TZ

)

A high level Pseudo code for Monte Carlo can then be written as the
following:

Step (1) Generate Random Paths for the underlying Assets
Step (2) Apply the Payoff on the Random Paths
Step (3) Average the Payoff over the sample

For Step (1) we have choices. From amongst different RNG algorithms
one could use Pseudo Random sequences or Quasi-Random sequences.
Also one could then construct paths with these sequences using a simple
Weiner Path or using a Brownian Bridge. Also the underlying paths could
be from Variance Gamma process with Levy density [13].

Next we have to specify the Payoff function, which is typically a math-
ematical expression. By using a simple parser environment, we show that
Step (2) can be defined and evaluated at runtime. This leads to code-reuse
and flexible implementation.

But more importantly Step (1) and Step (2) are independent of each
other. Step (1) could also be a simple Jump Diffusion model like the one
proposed by Merton [8] and detailed in [4].

Merton’s Jump process can be written as the following:

dS(t)

S(t−)
= r dt + σdW (t) + dJ(t)

In this model jumps are Compound Poisson Process and their inter
arrival times are exponential. The Jumps themselves are lognormally dis-
tributed and are independent of the diffusion and the Jump process.

The process in Step (1) could also be one where the underlying is driv-
en by a stochastic volatility model or a Garch type model.

3.2 Greeks by Pathwise Method5

The Pathwise derivatives have been proposed as an alternative to typical
finite-difference methods that are used to compute the Greeks in the
Monte Carlo framework.

Finite difference based Greeks are notorious for being noisy. Morrison
suggests the following in GSL. (Gnu-Scientific Library)

“Construct a divided difference table with a fairly large step size to get a very
rough estimate of f ′′ . Use this to estimate the step size which will minimize
the error in calculating f ′ ”

More recently Martins [12] illustrates the use of a complex step deriv-
ative to reduce the finite difference noise when computing derivatives6.

In the context of Monte-Carlo, the optimal step-size “h” to compute the
Greeks by bumping remains a difficult problem. This has been discussed in
[4] and [9]. A large “h” introduces errors due to a non-linear payoff function
and a small “h” induces a higher variance. This is further complicated with
bias and computational cost from doing two separate runs to estimate the
finite difference Greeks in Monte Carlo.

Pathwise Derivatives has been proposed as an alternative in [10] and
details on this can also be found in [4] and [11].

^
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The method works for smooth payoffs by using the payoff derivatives
to estimate the price derivatives.

C(T) = E[ f (S(θ ))]

dC(T)

dθ
= d

dθ
E[ f (S(θ ))]

dC(T)

dθ
= E

[
df (S(θ ))

dθ

]

Essentially to compute the derivative with respect to an underlying
parameter (asset price, volatility, interest rates) we simply move the deriv-
ative under the Payoff inside the expectation.

And the Delta and Vega for a vanilla European option can be
derived as:

Delta:

� = e−rT 1{S(T)≥K}
S(T)

S(0)

Vega:

ν = e−rT 1{S(T)≥K}S(T)(−σ T + √
TZ)

Where 1{S(T)≥K} is an indicator function.
Further the Pathwise derivatives can be computed independent of the

asset price process S(T). This allows us to do separation of concerns. We
can now generate the S(T) using our favorite volatility model and/or Jump
diffusion model and still use the above expressions to compute the
Greeks.

Exhibit - 1

01 Function MC_parse1d(payoffstring,S0,v,t,r,d) As Double

02

03 Dim ST, volTime As Double 

04 volTime = v * Sqr(t) 

05 '##loop counter

06  Dim indx As Long

07  '##running sum holder

08  Dim avgP,drift As Double

09  Const NUM_SIMS As Double = 10000

10  drift = (r * t - 0.5 * volTime ^ 2)

11 Dim Fun As New clsMathParser

12  If Not Fun.StoreExpression(payoffstring) Then GoTo Error_Handler

13

14 On Error GoTo Error_Handler

15

16 For indx = 1 To NUM_SIMS

17  dr_ = myGauss(0, 1) '##a normal RNG

18  ST = S0 * Exp(drift + volTime * dr_)

19  Fun.VarSymb("S")= ST

20  Value_F = Fun.Eval

21   avgP = avgP + Value_F

22  Next indx

23

24  MC_parse1d = avgP / NUM_SIMS

25  Exit Function

26

27  Error_Handler:

28  Debug.Print Err.Source, Err.Description

29

30 End Function
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3.3 Math Parser environment for Excel

The clsMathParser is a numeric evaluator that can be embedded within
Excel/VBA that allows us to input and evaluate any numerical expression
at runtime. The parser recognizes physical expressions, constants and
international units of measure. For details on the parser c.f. [6].

As we described above the payoff function is typically a mathematical
expression. Again a European call option is Max(S-X, 0) and a put option
is Max(X-S, 0). And a Call spread is defined as

if ST >= X, min

(
U, max

(
ST − S0

S0
, 0

))
else 0

A host of 1-dim options can be priced using the code in Exhibit-1.
Similarly for a 2-d option we have a simple spread option defined as:

Max([S1-S2-X], 0)

A weighted 2-asset basket option payoff defined as: Max([w1*S1+
w2*S2], 0) etc.

The 1-d parser code that can be used to price several 1-d payoff types.
The payoff expression is passed to the function as an argument.

In Exhibit-1 the 1-dim paths are generated using a Gaussian random
number generator in line 17, the parser is initialized in line 11 and evalu-
ated in lines 19,20.

4 Numerical Test Results
In this section we present some test results using the above framework.

4.1 1-dim Options

4.1.1 Marks

TECHNICAL ARTICLE 1

Payoff String MC value Analytical Value

Vanilla Call (S<=110)*0+(S>110)*(S-110) 6.25 6.19

Vanilla Put (S>=110)*0+(S<110)*(110-S) 16.15 16.19

Vanilla Call max(S-110,0) 6.20 6.19

Call Spread 10000*min(10,max(S/100-1, 0)) 995.89

Quadratic option? max(S^2-S-10000,0) 2315.79

Asset or nothing call (S<110)*0+(S>=110)*S 40.19 39.8882

Cash or nothing put (S<110)*110+(S>=110)*0 76.41 76.3022

Gap Call Option (S>110)*(S-120) 2.27

Gap Put Option (S<110)*(120-S) 28.19

Supershares (100<=S<=125)*S/90 0.39

European call Payoff String MC Greeks

Delta (S>90)*(S/100) 0.71

Vega AND(((log(S/100)-(0.5*0.25^2))/0.25)*S,S>110) 0.37

4.1.2 Greeks by Pathwise Method7

4.2 Barriers

Stock price 100.0 S H 120
Strike 110.0 X L 80
Years to maturity 1.00 T K 0
Risk-free rate 0.00% r
Volatility 25.0% v
Div yield 0 d
Time steps 100 nstep 1000
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4.2.1 Marks

Option Type Payoff String Monte carlo price

Spread Option max(S1-S2-5,0) 4.996640747
Multi-strike call/max max(0,max(S1-80,S2-70)) 37.25773123

Best of (S1/100>S2/90)*(S1-90)+(S1/100<S2/90)*(S2-80) 29.64422334
Worst of (S1/100<S2/100)*(S1-90)+(S1/100>S2/90)*(S2-80) 6.979293785

Basket Call max(0,(S1+S2)-90) 125.5420128
Basket Put max(0,140-(S1+S2)) 0.381792605
Weighted Basket max(0,(0.7*S1+0.3*S2)-90) 14.13227
Multi Strike Put/Min max(0,max(120-S1, 130-S2)) 33.53047215
Quantos8 max(S1-1000/S2,0) 93.83028718

4.3 2-dim Options

4.3.1 Marks

Payoff String Greeks

Spread Option
Delta 2 -(S1/100)*(S2-S1>5) −0.491338145
Delta 1 (S2/90)*(S2-S1>5) 0.800314928

Max Option
Delta 1 (S1/100)*AND(S1>S2,S1>80) 0.311265346
Delta 2 (S2/100)*AND(S2>S1,S2>80) 0.754868842

Payoff String Barrier Indicator MC value Closed Form

up and out max(S-110,0) AND(S<120,1) 0.16 0.13
down and out max(S-110,0) AND(S>80,1) 6.04 6.09
up and in max(S-110,0) OR(S>80,0) 5.71 6.06
down and in max(S-110,0) OR(S<80,0) 0.09 0.10

Asset Price 1 100.0 div1 —
Asset Price 2 90.0 div2 —
Strike Rho 0.50
Years to maturity 1.00
Risk-free rate 0.00%
Volatility 1 20.00%
Volatility 2 25.0%

4.3.2 Greeks
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5 Summary
In this paper we have shown that using a simple math parser one can
price and compute Greeks for a host of different payoff functions using a
single piece of code. Further as the MC method is amenable for separa-
tion of concerns this leads to a natural framework, with reuse and the
possibility of rapid development for new payoff functions. It is possible to
handle path dependent options (lookbacks, barriers) with a little effort
and alternate processes (VG) in this framework.

1. http://shootout.alioth.debian.org/
2. See Scicomp (http://www.scicomp.com) for this. The claim for the earliest MC parser
tool used in finance appears to be “Derivatool” from FEA http://www.fea.com
3. In an interesting aside the earlier edition of a popular book claimed that it was not pos-
sible to price American-style options using MC and a more recent edition has updated and
discusses the Least Squares approach of Longstaff and Schwartz.
4. “Separation of concerns (SoC) is the process of breaking a program into distinct fea-
tures with no overlap in functionality. Typically, concerns are synonymous with features or
behaviours or stages’’, Refer [7] for additional details.
5. This is known as infinitesimal perturbation analysis.
6. Excerpted from GSL source code file “diff.c”, Axel Voight pointed this to me.
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