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STATIC HEDGING AND PRICING OF EXOTIC OPTIONS WITH PAYOFF

FRAMES

J. LARS KIRKBY AND SHIJIE DENG

Abstract. We develop a general framework for statically hedging and pricing European-style

options with nonstandard terminal payoffs which can be applied to mixed static-dynamic and

semi-static hedges for many path dependent exotic options including variance swaps and
barrier options. The goal is achieved by separating the hedging and pricing problems to

obtain replicating strategies. Once prices have been obtained for a set of basis payoffs, the

pricing and hedging of financial securities with arbitrary payoff functions is accomplished
by computing a set of“hedge coefficients” for that security. This method is particularly well

suited for pricing baskets of options simultaneously, and is robust to discontinuities of payoffs.
In addition, the method enables a systematic comparison of the value of a payoff (or portfolio)

across a set of competing model specifications with implications for security design.

1. Introduction and Literature Review

To accommodate the growing demand for nonstandard derivative payoffs, markets have de-
veloped to facilitate their trading. The sources of risk on which these contingent payoffs depend
have become increasingly diverse, as have the payoff structures specified in their contracts, which
necessitates robust pricing and hedging strategies to preempt the admission of arbitrage.

One strand of research in the continuously-expanding derivatives pricing literature focuses
on the static-hedging approach to pricing through statically or semi-statically replicating the
complex derivative payoffs with simple payoffs which are more amenable to valuation (see [1,
7, 10, 12, 14, 36, 37] and the references therein). The critical feature that distinguishes static
hedging from ordinary function approximation is that traditional numerical approaches take
mesh refinement for granted, whereas static hedging is constrained by the availability of market
payoffs, which in turn define the mesh. This distinction motivates the pursuit of approximation
with limited mesh refinement, where“basis” functions are chosen according to their availability
and liquidity in a given market. We show that by recasting the problem as one of projection onto
a suitably chosen frame space, the optimal static hedge is efficiently obtained. Furthermore, such
approximations are shown to produce exact representations in the limit as the mesh is refined,
much like the integral representations provided by [12].

The contributions of our analysis are as follows. First, we advance a new theoretical frame-
work for pricing contingent claims and studying their perfect static replication strategies, with
implications for security design. Specifically, new financial instruments can be introduced ac-
cording to the richness of payoffs they are able to synthesize, and in a way that generates
standardized markets such as those for plain vanilla options. Frames provide the flexibility to
study spaces of claims spanned by simpler securities.

Second, we provide a systematic scheme for hedging exotic derivatives including path-dependent
options through a new means of static replication that can be implemented in markets with a
reasonable spectrum of strikes on European options spanning practical trading ranges. By im-
proving the accuracy of static replication, fewer instruments are required to achieve a desired
hedge, and hedges are obtained with greater efficiency using methods developed in this work.
Specifically, our approach consistently reduces the relative hedge error by more than half, while
at a cost within fractions of a millisecond of basic interpolation. The risk reduction across a
portfolio of exotic payoffs can be substantial. Not only is the hedging of nonlinear European
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2 J. LARS KIRKBY AND SHIJIE DENG

options improved, but the method extends to procedures designed to hedge path dependent
options. In particular, semi-static hedges for barrier and American options as well as mixed
static-dynamic strategies employed for products such as realized variance swaps are improved
by the new methods.

Finally, accurate prices for exotic payoffs are obtained by combining the static hedge with
existing methods for pricing vanilla instruments. Prices computed from projected payoffs con-
verge at a rate that is often several orders faster than when pricing the payoffs directly. Hence,
once payoff coefficients are obtained, subsequent valuations are implemented at a fraction of the
cost. This method is particularly well suited for pricing baskets of options simultaneously, and
is robust to discontinuities of payoffs. In addition, the method enables a systematic comparison
of the value of a payoff (or portfolio) across a set of competing model specifications.

Traditional approaches to static hedging typically impose restrictions on the underlying’s risk-
neutral dynamics, though superior results relative to dynamic hedging have been documented
when the assumptions hold and even when these assumptions are relaxed. In [8], a put-call
symmetry is established which yields a parity between call and put prices at different strikes,
assuming a particular symmetry holds for the underlying or an auxiliary process. A powerful
result (which inspired the present work) is found in [12], where a static integral representation is
shown to hold for a large class of functions in terms of liquid assets along a spectrum of strikes.
A similar representation is derived in [14] which relates call prices to a spectrum of nearer-expiry
calls. Static hedging of exotic options has experienced great success in recent years (see [20] for
an early account). Numerical and simulation studies demonstrating the superiority (in terms of
replication error) and robustness to model misspecification relative to discrete delta hedging are
given in [14], [21] and [37] (see also [41] for simulation studies involving Asian, barrier, lookback,
and quanto options).

The approach to static hedging via orthonormal basis representation has been studied in [36]
and [19], where special features of the underlying risk-neutral dynamics are used to construct
an orthonormal basis for the claim space using the valuation operator. Option representation
(spanning) in terms of characteristic functions is introduced and analyzed in [1]. As in [12],
our approach is based on synthesizing a target payoff function with a set of simple, liquidly
traded payoffs (that is, contingent claims on specific payoff forms), where hedging instruments
are prescribed according to features of the physical payoff to be received. Once hedging is
accomplished (or eschewed if prices are the only risk source), valuation follows either by observing
market prices for the simple payoffs, or by specifying a model and then pricing the simple payoffs
simultaneously.

The remainder of the paper is organized as follows. Section 2 presents several applications of
pricing and hedging exotic derivatives and path-dependent options where our proposed frame-
work can be effectively applied. Section 3 introduces the methodology, and develops the theory
for frame-based pricing and hedging. In section 4, frame theory is applied to the current state
of option markets by utilizing a basis formed from actively traded vanilla options, coined the
butterfly basis, whereby we obtain an analytical representation of the “dual basis”. The classes
of payoff functions to which the methods apply are characterized in section 4.2. Calculation
of hedge coefficients is discussed in section 5, where we develop a new method of function ap-
proximation with alternative biorthogonal sequences. Section 6 presents several applications,
including static hedges for exotic European payoffs, mixed static-dynamic hedges for variance
swaps and semi-static hedges for barrier options. Concluding remarks are provided in section 7.
An additional set of numerical pricing experiments is conducted with respect to the butterfly
basis in the Appendix, demonstrating the method’s acceleration of option value convergence.
Proofs are provided in the appendix as well. A supplemental appendix is also available in the
authors’ online version, containing additional experiments and complimentary results.

2. Motivating Applications

In this section we consider several financial applications to motivate the framework presented.
In each of these applications the unifying strategy is to identify a static representation of some
or all of the risk inherent in a financial position, expressed as a function g(ST ) of the underlying
risk-factor ST , where T indexes a static time horizon. Given a suitably chosen basis {Ψk(ST )},
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we form an approximation g(ST ) ≈
∑
k αkΨk(ST ). If possible, we will decompose Ψk(ST ) into

tradable market securities, which provides an implementable hedge. Regardless, pricing of g(ST )
is accomplished by pricing the component functions, either using a model or inferring their prices
from traded instruments. As discussed in Section B.1, problems with multiple decision periods
can be handled as well, by identifying a series of static exposures.

2.1. Static Hedging: Nonlinear Risks. Despite the prevalence of nonlinear risk in financial
applications, its idiosyncratic nature often leads firms to seek customized over-the-counter pay-
offs to offset exposure. For example, demand elasticities faced by commodity producers cause
revenues to vary nonlinearly with realized commodity prices. If the price risk of future revenues
can be quantified it is possible to acquire protection in the form of financial contracts [45]. For
instruments with interest rate sensitivities, convexity risk poses a similar problem which can be
eliminated by an offsetting power straddle position (see [42] and the references therein), which
has a terminal payoff g(ST ) = (ST − K)2, where ST is an underlying source of randomness.
Additionally, power straddles can be used as tool for capturing implied volatility (vega) risk
faced by options traders [40]. According to [42] power straddles face constant exposure to future
implied volatility, allowing the holder to lock in future levels. In addition to power straddles,
one often encounters the powered call option [27]

g(ST ) = (max{ST −K, 0})2
=
(
[ST −K]+

)2
,

and the power call option

g(ST ) = max{S2
T −K2, 0} = [S2

T −K2]+.

In particular, the power straddle can be decomposed in terms of a powered call and put option
(ST −K)2 = ([ST −K]+)2 +([K−ST ]+)2, so any one of these contracts can be priced or hedged
in terms of the other two. To avoid catastrophically large payoffs, one can consider the capped
power payoffs. For example, a p-th order capped power call pays

g(ST ) = (ST −K)p1[K≤ST≤C] + (C −K)p1[ST>C],

for some C > K. From the perspective of the option supplier, we develop methods to hedge the
sale of general nonlinear contracts in terms of more liquid instruments.1 Experiments illustrating
the effectiveness of this framework for exotic European options are given in Appendix A.

2.2. Semi-Static Hedging: Barrier and American Options. Semi-static refers to a hedg-
ing strategy that requires finitely many trades during the life of a contract. In [6], an approach
to semi-static hedging of barrier options using only European options maturing on the same date
is developed that requires at most one transaction during the barrier option’s life ( [8] extends
the approach to include rolldown, ratchet and lookback options as well). This approach is used
as well by [39] to price and hedge barrier and lookback options.

While a Black-Scholes economy is required for the hedge to provide perfect replication, sim-
ulation studies have shown superior performance in terms of hedge error variance relative to
dynamic hedging strategies for specifications including Heston’s stochastic volatility model,
Merton’s jump diffusion model, and the variance gamma model [37]. These results are fur-
ther extended rigorously to local/stochastic volatility models and time-changed Lévy processes
when a symmetry condition is satisfied [10].

Take for example the down-and-in claim which pays out f(ST ) at time T as long as a lower
barrier H < S0 is breached during [0, T ]. Based on the result of [6, 7] (later extended to more
general dynamics in [10]), we define the adjusted payoff

f̃DI(ST ) =
[
f(ST ) + (ST /H)

p
f
(
H2/ST

)]
1[ST<H],

where p := 1− 2(r − d)/σ2, with interest rate r ≥ 0, dividend yield d ≥ 0, and volatility σ > 0.
If St fails to reach the lower barrier for t ∈ [0, T ] this European payoff expires worthless, as
does the down-and-in claim. However, if the barrier is hit at some τH ∈ [0, T ], then the value of
(ST /H)

p
f
(
H2/ST

)
1[ST<H] coincides at time τH with the value of f(ST )1[ST>H]. Thus, if the

1Moreover, rather than offer standardized markets for a plethora of nonstandard products, the framework

we develop can be used to design standardized markets capable of approximating a multitude of nonstandard

payoffs with high accuracy.
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proceeds generated by selling (ST /H)
p
f
(
H2/ST

)
1[ST<H] at time τH are used to purchase the

payoff f(ST )1[ST>H], the position held over [τH , T ] is the payoff f(ST ), which matches that of
the down-and-in claim. Hence the semi-static hedge coincides perfectly with the down-and-in
position for any path of the underlying. For a concrete example, by in-out parity the adjusted
payoff corresponding to the down-and-out and up-and-out contracts satisfy

f̃DO(ST ) = h(ST )1[ST>H] − (ST /H)
p
h
(
H2/ST

)
1[ST≤H]

and
f̃UO(ST ) = − (ST /H)

p
h
(
H2/ST

)
1[ST>H] + h(ST )1[ST≤H],

where h(ST ) = (ST − K)+ for a call and h(ST ) = (K − ST )+ for a put. In Section 6.4, we
demonstrate the application of butterfly basis hedging to down-and-out put options.

In a similar pursuit, certain options with early exercise features such as American binary
claims [13] offer perfect static replication strategies in a Black-Scholes economy. Given the pair

of stationary securities Sγ±εT whose values are invariant over [0, T ], an American binary claim is
perfectly replicated by the European payoff[

(ST /H)
γ+ε

+ (ST /H)
γ−ε
]
1E ,(1)

where E = [ST < H] for a put, E = [ST > H] for a call, γ := 1
2 −

r−d
σ2 , and ε :=

√
γ2 + 2r

σ2 .

In all of these cases, the success of a static or semi-static replicating strategy depends on the
existence of a liquid market in nonlinear European payoffs. Of course no such markets exist,
so the task of replication is again to find a suitable approximation for nonlinear payoffs using
actively traded instruments. The analysis to follow is in response to these demands for accurate
nonlinear payoff approximations.

3. Frames of Hedging Instruments and the Basis Theory

In what follows, we consider a generic European option market on the time T realization
of an underlying process (e.g an interest rate, equity, index, etc.), denoted ST , in which a set
of payoff forms MT are currently traded. For example, f ∈ MT where f(ST ) = (ST − K)+

would denote the payoff of a European call option on ST . The present work analyzes how to
“optimally” approximate a general payoff h 6∈ MT by assembling traded payoffs from MT .

The standard approach to static replication, aside from simple linear interpolation, is to
discretize an integral representation of the desired payoff provided by [12]. Assuming that
h(ST ) is twice differentiable,2 Carr and Madan provide the integral representation

h(ST ) = h(F0) + h′(F0) · (ST − F0)

+

∫ F0

0

h′′(K)(K − ST )+dK +

∫ ∞
F0

h′′(K)(ST −K)+dK,(2)

which decomposes the payoff in terms of bonds, forwards (with current price F0), and a contin-
uum of calls and puts (see also [11]). To operationalize the integral representation, a discrete
approximation is required (see [45] for details). Their method performs reasonably well for
smooth payoffs but in practice it is ill-suited for discontinuities, which is one of the drawbacks
addressed by our approach.

We develop a method which is similar to Carr and Madan’s in that the payoff itself, instead of
the valuation operator particular to a given model, is approximated by a discrete set of payoffs
in MT . However, instead of working with market payoffs directly, we selectively “fuse” them
together to form a set {Ψk}k∈K of more amenable payoff forms.3 By mandating Ψk ∈ H := L2(R)
(orH+ := L2(R+)), we recast the problem of static replication in terms of optimal approximation
(in the L2 norm) from the setM := span{Ψk}k∈K. A careful design of the payoffs {Ψk}k∈K will
enable us to then re-express the optimal approximation fromM in terms of the original elements
of MT , thereby producing an optimal hedge in traded payoffs. After developing the theory in
L2, section 4.2 discusses the extension to unbounded payoffs using localized projections.

2This can be relaxed to “weakly” twice differentiable functions, for which kinks may exist in the payoff, by
applying the theory of distributions.

3Here, K is just an arbitrary indexing which will later represent a collection of available strikes.
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3.1. Basis Theory and Frames for Hedging. We present here only the rudiments of frame
and basis theory that are necessary to understand our presentation. Rigorous introductions to
the field include [28], [15] and [46].

Our primary objective is to approximate payoffs in H as linear combinations of the pay-
offs {Ψk}k∈K, f ≈

∑
k∈K αkΨk, for some coefficient functionals αk = αk(f), which we refer

to as hedge coefficients. Let ‖·‖2 denote the L2 norm. By restricting attention to Bessel se-
quences {Ψk}k∈K, which for some B > 0 satisfy

∑
k∈K |〈f,Ψk〉|2 ≤ B‖f‖22, ∀f ∈ H, the ap-

proximation
∑
k∈K αkΨk converges unconditionally4 for any {αk}k∈K ∈ l2(K). For {Ψk}k∈K

to admit useful representations, both a lower and upper bound must be satisfied for arbitrary
f ∈ span{Ψk}k∈K :=M. Specifically, {Ψk}k∈K ⊂ H is called a frame sequence (or a frame for

M) if for some dense subset M̃ ⊂M, it satisfies

A‖f‖22 ≤
∑
k∈K

|〈f,Ψk〉|2 ≤ B‖f‖22, ∀f ∈ M̃,

for some 0 < A ≤ B.5 In fact, every frame sequence defines a bounded linear operator
T : l2(K) → H by T{ck} =

∑
k∈K ckΨk. The adjoint, T ∗ : H → l2(K) is given by T ∗f =

{〈f,Ψk〉}k∈K. Upon composing T with T ∗, we obtain the frame operator S : M → M
by Sf = TT ∗f =

∑
k∈K〈f,Ψk〉Ψk, which is bounded, invertible and self-adjoint. Further-

more, for any f ∈ M, f =
∑
k∈K〈f, S−1Ψk〉Ψk, which is called the frame representation, and

{Ψ̃k}k∈K := {S−1Ψk}k∈K the cannonical dual. For a general frame sequence, the canonical dual

is unique although the representation is not.6 Moreover, {Ψ̃k}k∈K is also a frame for M.
Frame sequences can be thought of as spanning sets which relax the unique representation re-

quirement of bases. A frame sequence for which {ck}k∈K ≡ 0 is implied whenever
∑
k∈K ckΨk =

0 is called a Riesz sequence (or a Riesz basis forM = span{Ψk}k∈K).7 In fact, a Riesz sequence

is a (non-orthogonal) basis for its closed span. This implies that f =
∑
k∈K〈f, Ψ̃k〉Ψk is the

unique representation of any f ∈M, where the canonical dual {Ψ̃k}k∈K is now biorthogonal to

{Ψk}k∈K: 〈Ψk, Ψ̃m〉 = δk,m = 1{k=m}, for any k,m ∈ K.
Whenever {Ψk}k∈K is a frame or Riesz sequence, the orthogonal projection PM : H →M of

H onto M is given by PMf =
∑
k∈K〈f, Ψ̃k〉Ψk, ∀f ∈ H. As for our objective, the L2 optimal

static hedge of f ∈ H in terms of the available payoffs inM is given by PMf . When {Ψk}k∈K is a
frame (so the representation is not necessarily unique), PMf selects among all L2 optimal hedges

the one for which the coefficients are l2(K) minimal. That is, ‖{〈f, Ψ̃k〉}‖l2(K) ≤ ‖{〈f, ck〉}‖l2(K)

whenever
∑
k∈K〈f, Ψ̃k〉Ψk =

∑
k∈K ckΨk, so PMf uses the fewest assets (in the l2 norm sense).

3.2. Hedging with Frames of Simple Payoffs. The simplest procedure for manufacturing
a frame sequence is to takeM = span{φk}k∈K where φk(ST ) := Tkφ(ST ) = φ(ST − k) for some
fixed payoff φ ∈ H, and Tk the translation operator. The payoff φ is called the generator of the
frame of translates {φk}k∈K = {Tkφ}k∈K, and the corresponding frame operator S : M →M
is given by Sf =

∑
k∈K〈f, Tkφ〉Tkφ. Although our primary interest is hedging payoffs in H+, it

is easier to modify representations for H than to frame H+ directly. Similarly, by allowing (at
most) countable frame sequences, we take K = Z unless otherwise specified, where non-integer
translations will be handled shortly.

For frames of translates, the commuter relations STk = TkS and S−1Tk = TkS
−1 for all

k ∈ Z imply an especially simple characterization of the canonical dual frame:

{T̃kφ}k∈Z = {S−1Tkφ}k∈Z = {TkS−1φ}k∈Z = {Tkφ̃}k∈Z := {φ̃k}k∈Z,

where φ̃ := S−1φ is the canonical dual generator corresponding to φ.
A further generalization is to generate sequences of translated dilations of a single generator

φ ∈ H at a modified scale or resolution. When implementing a hedge in practice, the resolution

4Irrespective of how the Ψk are ordered.
5If these bounds hold ∀f ∈ H (or a dense subset thereof), {Ψk}k∈K is called a frame. In particular, a frame

is complete for H, span{Ψk}k∈K = H.
6There may be other coefficients αk for which f =

∑
k∈K αkΨk, for f ∈M.

7This criterion, which is a stronger form of linear independence, is known as ω-independence.
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is fixed according to available market payoffs. However, to facilitate the theoretical develop-
ment of frame based pricing and hedging, it becomes advantageous to partition the domain
space dyadically in the following manner, consistent with the approach taken in the frame (and
wavelet) literature.

3.2.1. Frame Multiresolution Analysis. Starting with a frame generator φ ∈ H, consider first
the space U0 := span{Tkφ}k∈Z = span{φ0,k}k∈Z, where φ0,k(ST ) := φ(ST − k). To transition

between approximations at different scales we define the operator D by Df(x) = 21/2f(2x). By
composing D with itself j times, it follows that Djf(x) = 2j/2f(2jx). By slicing the translation
granularity in half, the next finer space is U1 := Dspan{Tkφ}k∈Z = span{φ1,k}k∈Z, where

φ1,k(ST ) := 21/2φ(2ST − k). Proceeding similarly we obtain

(3) Uj := Djspan{Tkφ}k∈Z = span{φj,k}k∈Z,

where φj,k(ST ) := 2j/2φ(2jST − k) = DjTkφ(ST ).
As long as φ has been appropriately selected, with selection criteria provided shortly, any

function in H can be approximated arbitrarily well for some fixed resolution level j by forming
linear combinations of φj,k as k varies over Z. Appropriately chosen generators φ induce a
special structure on the space H.

Definition 3.1. (Frame Multiresolution Analysis) A function φ ∈ H which generates a
frame sequence {Tkφ}k∈Z is said to generate a frame multiresolution analysis (FMRA)8 if the
spaces {Uj}j∈Z defined in (3) satisfy

(i) · · ·U−1 ⊂ U0 ⊂ U1 · · · , (ii) ∪jUj = H.

At each resolution, the canonical dual is given by {T2−jkθj}k∈Z, where θj := S−1Djφ. For
f ∈ H, an approximation in terms of the scale j frame sequence is given by the orthogonal
projection operator

Pjf(ST ) =
∑
k∈Z
〈f, T2−jkθj〉φj,k(ST ).

Proposition 3.1. If φ generates an FMRA, then for each j ∈ Z the following hold:

(i) {φj,k}k∈Z is a frame for Uj = span{φj,k}k∈Z.
(ii) ∀f ∈ H, ‖Pjf‖2 ≤ ‖f‖2 and limj→∞‖Pjf − f‖2 = 0.

In summary, if we start with a payoff φ(ST ) which generates an FMRA, then scaled and
shifted versions of φ enable an approximate hedge of any f ∈ H which approaches (in L2) the
true payoff as the support of f is partitioned into a finer strike space. The next step is to price
f by pricing elements of the frame. Once frame elements have been priced, then at any fixed
resolution, the pricing of arbitrary f ∈ H is reduced to the computation of its hedge coefficients.

3.3. The Pricing Functional. Consider the case of positive underlying asset prices, ST =
S0e

XT , where XT is a process with known characteristic function µ̂T (ξ).9 We denote the density
of ln(ST ) by qT (with characteristic function q̂T (ξ)), and note that ln(ST ) = ln(S0)+XT , where
S0 is assumed to be known at the time of pricing. For a given risk neutral density qT (with S0

fixed), define the pricing functional V : H → C by

V(f) = e−rT
∫
R
f(ey)qT (y)dy = e−rT

∫
R
f(S0e

x)µT (x)dx.

A mild restriction on qT enables the pricing of any f ∈ H.

Theorem 3.1. Suppose qT is essentially bounded (qT ∈ L∞(R)), and |q̂T (i)| < ∞. Then the
pricing functional satisfies V ∈ H∗, i.e V is a bounded linear functional over H.

8The reader should be aware that this definition is significantly shorter than equivalent ones given in most
(especially older) treatments of FMRAs. See [15] chapter 13 for details.

9Note that µ̂T (ξ) may depend on additional model parameters. The transform here is with respect to a single
source of randomness, XT .
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For example, if q̂T ∈ L1(R), it follows that for every continuity point of q̂T (x), |qT (ξ)| =
1

2π |
∫
R e
−ixξ q̂T (x)dx| ≤ 1

2π‖q̂T ‖1, so qT ∈ L∞(R). In terms of a frame sequence {φj,k}k∈Z with
dual {T2−jkθj}k∈Z, the approximate pricing functional at resolution j can be defined as

Vj := V ◦ Pj , Vjf = e−rT
∫
R

(∑
k

〈f, T2−jkθj〉φj,k(ey)
)
qT (y)dy.

Theorem 3.2. Suppose the conditions of Theorem 3.1 hold, and let φ be a frame generator with
θj := S−1Djφ. Then for each j ∈ N, Vj : H → C is a bounded linear functional satisfying

Vjf =
∑
k

〈f, T2−jkθj〉V ◦ φj,k, f ∈ H.

Moreover, if φ generates a FMRA, Vj → V uniformly in H. That is,

lim
j→∞

sup
f∈H,‖f‖2=1

|Vjf − Vf | = 0.

In particular, frame pricing is a (uniformly) consistent approximation to the pricing problem.
Moreover, payoff representations are valid independently of the underlying dynamics, as long
as |q̂T (i)| <∞, since any such pricing operator V yields a consistent approximation in terms of
the frame elements. Likewise, admissible payoffs are specified independently of V, and so can
be used from one model to the next.

3.4. Pricing and Hedging with Riesz Bases. While frames are certainly sufficient to guar-
antee the representation properties we desire, and they provide enough structure to conduct
fruitful analysis, the elegant dual structure of Riesz bases greatly simplifies their implementa-
tion.10 Recall that for φ ∈ H, {Tkφ}k∈Z is a Riesz basis for M := span{Tkφ}k∈Z if

(1) ∃φ̃ ∈M such that {Tkφ̃}k∈Z is biorthogonal to {Tkφ}k∈Z, and
(2) ∃B ≥ A > 0 such that A‖f‖22 ≤

∑
k∈Z |〈f, Tkφ〉|2 ≤ B‖f‖22, ∀f ∈M.

By replacing the frame condition with the requirement that φ generates a Riesz sequence which
satisfies (i) and (ii) of definition 3.1 for the spaces {Uj}j∈Z defined in (3), we have what is called
a Riesz multiresolution analysis (RMRA). For f ∈ H, an approximation in terms of the scale j
Riesz sequence is given by the orthogonal projection operator

Pjf(ST ) =
∑
k∈Z
〈f, φ̃j,k〉φj,k(ST ).

Similarly, to restrict attention to payoffs f ∈ H+, we define the H+-projection Pj+ : H+ →
Uj+ := span{φj,k}k≥0 as Pj+f(ST ) =

∑
k≥0
′〈f, φ̃j,k〉φj,k(ST ), where

∑′
indicates that each φj,k

has been restricted to R+ (φj,k(x)1x≥0). By theorem 3.2, the approximate pricing functional at

resolution j can be defined in the RMRA case as Vj := V ◦ Pj , Vjf =
∑
k∈Z〈f, φ̃j,k〉V ◦ φj,k,

for f ∈ H. The value convergence can also be characterized formally by following:

Corollary 3.3. If φ ∈ H generates a Riesz sequence, then for each j ∈ Z the following hold:

(i) {φj,k}k∈Z is a Riesz basis for Uj = span{φj,k}k∈Z.
(ii) If φ generates an RMRA, then ∀f ∈ H, ‖Pjf‖2 ≤ ‖f‖2 and limj→∞‖Pjf − f‖2 = 0.

Moreover, Vj → V, uniformly in f ∈ H.
(iii) For f ∈ H+, limj+→∞‖Pj+f − f‖2 = 0, and limj+→∞ |V ◦ Pj+f − Vf | = 0.

When the basis elements (or their components) are priced in a market, valuation is reduced
to an observation of market prices.

10In particular, the butterfly basis discussed in section 4 is a special class of FMRA in which the the generator
φ is compactly supported and generates a Riesz sequence of translates.
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3.4.1. Integral Representation for Riesz Basis Projection. A closed-form integral representation
of the orthogonal projection coefficients for Riesz bases is now derived. Consistent with the
financial literature, we define the FT of an L1 or L2 function as

Ff(ξ) = f̂(ξ) =

∫
R
eiξxf(x)dx.

If φ generates a Riesz sequence, then φ̃ := S−1φ is given by

̂̃
φ(ξ) =

φ̂(ξ)

Φ(ξ)
, where Φ(ξ) =

∑
k∈Z

∣∣∣φ̂(ξ + 2πk)
∣∣∣2 .

In fact, {Tkφ}k∈Z is a Riesz (resp. frame) sequence iff A ≤ Φ(ξ) ≤ B for almost every ξ ∈ [0, 2π]
(resp. ξ ∈ N , where N := [0, 2π]/{ξ : Φ(ξ) = 0}) for some A,B > 0. For a frame, the dual

generator is given by φ̂(ξ)/Φ(ξ) · 1N (ξ). As outlined in the appendix, one way to determine Φ
is by Fourier series expansion.

To accommodate the resolution a > 0 found in practical settings (implied by the spacing
between option strikes), we define the dilation operator Da which acts on f ∈ H according to

Daf(x) = |a|1/2f(ax). We now denote by PMa
f =

∑
k∈Z〈f, φ̃a,k〉φa,k the projection of f ∈ H

onto Ma := span{φa,k}k∈Z, where φa,k(x) := DaTkφ = a1/2φ(ax − k). An advantage of Riesz

bases over general frames is that the dual of {DaTkφ} is simply {DaTkφ̃} for φ̃ defined above,
which yields the following.

Theorem 3.4. Let {Tkφ}k∈Z be a Riesz sequence in H with real-valued generator φ and canon-

ical dual φ̃. Further, define Ma = span{φa,k}k∈Z, where φa,k := DaTkφ. The following hold:

(i) φ̃a,k := DaTkφ̃ is the unique biorthogonal dual Riesz basis inMa corresponding to {φa,k}k∈Z.
(ii) For any real-valued f ∈ H the projection of f onto Ma is given by

PMaf(ST ) =
∑
k∈Z

βa,k · φa,k(ST ),

βa,k :=
a1/2

2π

∫
R
e−ikξ f̂(aξ)

̂̃
φ(−ξ)dξ =

a1/2

π

∫ ∞
0

<

[
e−ikξ

f̂(aξ)φ̂(−ξ)
Φ(−ξ)

]
dξ.

Computationally speaking, in order to switch between scales a Riesz sequence is preferred

since a single calculation of φ̃ reveals the dual at all scales.

3.4.2. Error Bounds for Riesz Bases. This section analyzes the convergence behavior for a par-
ticular class of Riesz basis, and for functions of sufficient regularity. We denote by Wm

2 the
Sobolev space of functions whose first m (weak) derivatives are defined in H = L2. Similarly,
denote by Wm

∞ the Sobolev space of functions with bounded (weak) derivatives up to order m,
where

‖f‖∞ = lim
p→∞

(∫ ∞
−∞
|f(x)|pdx

)1/p

= sup
x∈R
|f(x)|.

For a Riesz sequence generated by φ, the convergence rate of approximations fromMa to f ∈ H
of the form

fa(ST ) := a1/2
∑
k∈Z

ϑa,kφ(aST − k), {ϑa,k}k∈Z ∈ l2(Z),

can be characterized in terms of φ̂ and its derivatives. In particular, a Riesz generator φ is called
an mth order Riesz generator if

(4) φ̂(0) = 1, and for q = 0, ...,m− 1, φ̂(q)(2πk) = 0, k ∈ Z/{0},

where φ̂(q) denotes the qth derivative of φ. The analysis of [44] establishes hedging error bounds

and the speed of convergence with respect to a. Namely, if (φ, φ̃) form a mth order Riesz
generator/dual pair, then the projection error for f ∈ Wm

2 satisfies

inf
fa∈Ma

‖f − fa‖2 ≤ ‖f − PMa
f‖2 ≤ C(φ)a−m‖f (m)‖2,
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where C(φ) is independent of f . From the perspective of hedging, in which mesh refinement is
limited, [43] observes that coarse scale least-squares approximations behave like an interpolation
but with twice the order of accuracy. In particular, [43] finds that the projection error for
f ∈ Wm

2 satisfies

(5) ‖f − PMa
f‖2 ≤ B2,m(φ)‖f (2m)‖2 · a−2m +

√
B2,m(φ)‖f (m)‖2 · a−m,

for some B2,m(φ) independent of f . While asymptotically the error decays as O(a−m), it
exhibits O(a−2m) decay for coarse resolutions. Moreover, the swift initial decay translates into
accelerated valuation algorithms when applied to projected payoffs.

We can also characterize the decay in terms of the L∞ norm in the Sobolev space Wm
∞. In

general, the orthogonal projection operator PMa
can be expressed as

PMa
f(x) =

∫
R
f(y)a ·K(ax, ay)dy, f ∈ H,

in terms of the reproducing kernel

K(x, y) =
∑
k∈Z

φ(x− k)φ̃(y − k).

From this perspective, condition (4) is equivalent to∫ ∞
−∞

K(x, y)dy = 1,

∫ ∞
−∞

(y − x)qK(x, y)dy = 0, q = 1, . . . ,m− 1.(6)

From Proposition 3.3 of [43], for φ satisfying (6), it holds that

‖f − PMaf‖∞ ≤ B∞,m(φ)‖f (m)‖∞ · a−m, ∀f ∈Wm
∞ ,

where

B∞,m(φ) :=
1

m!
sup
x

[∫ ∞
−∞
|x− y|m|K(x, y)|dy

]
.

In particular, for functions of sufficient regularity, convergence is attained in the L2 and L∞

norms.

4. The Butterfly Basis

Given the current state of financial markets, we study in detail a surprisingly effective method
of payoff replication which utilizes the compactly supported, real-valued payoff generator ϕ:

ϕ(ST ) = (1− |ST |)+ = (1− |ST |)1[−1,1](ST ).

For a fixed a > 0, we define the scale-a butterfly basis11 as the sequence ϕa,k := T k
a
Daϕ ≡ DaTkϕ

given by:

ϕa,k(ST ) = a1/2 (1− |a (ST − k/a)|)1[− 1
a ,

1
a ] (ST − k/a)

= a1/2(1− |aST − k|)1[ k−1
a , k+1

a ](ST ),

where 1/a represents the step size of a uniform spacing of strikes. For short-term S&P 500
index options, a value of a = 1/5 provides a five dollar spacing between strikes, at least near the
forward price. From [15]( p.289), it is easily verified that the butterfly basis on H with generator
ϕ(ST ) = (1− |ST |)I[−1,1](ST ) generates an RMRA.

In most markets, asset prices (and the support of any contingent payoffs) are assumed to be
positive. In this case, ϕa,0 is easily adjusted by truncating its support, while ϕa,k for k ≥ 1 is

supported over [k−1
a , k+1

a ] ⊂ R+. Specifically, in H+ we define the left boundary put

ϕa,0(ST ) = a1/2(1− aST )1[0, 1a ](ST ) = a3/2
(1

a
− ST

)+

,

11Readers may recognize ϕ as the hat, tent, or linear B-spline scaling function, depending on the context.
Our terminology is a reference to the butterfly spread commonly used in option markets.
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and we will represent arbitrary payoffs in H+ by linear combinations of butterfly basis elements:

(7) f(ST ) ≈ β0ϕa,0(ST ) +
∑
k≥1

βkϕa,k(ST ),

for a set of hedging coefficients {βa,k} to be determined.When hedging f ∈ H+ with payoffs
from M+

a := span{ϕa,k}k≥0, we define the H+-projection PM+
a

(analogous to Pj+ from section

3.4) by starting with the true orthogonal projection PMa
of f onto Ma := span{ϕa,k}k∈Z and

truncating the basis to to ϕa,0 ∪ {ϕa,k}k≥1. We use
∑′

to denote a series taken with respect to
the truncated basis elements.

Corollary 4.1. The butterfly basis, with generator ϕ and scale parameter a > 0 fixed, is a Riesz
basis for its closed span on H. Furthermore, the H+-projection of f ∈ H+ onto M+

a is given by

PM+
a
f(ST ) =

∑
k≥0

′
〈f, ϕ̃a,k〉ϕa,k(ST ) = βa,0ϕa,0(ST ) +

∑
k≥1

βa,kϕa,k(ST ),

where for k ≥ 1

(8) βa,k =
12a1/2

π
<
[∫ ∞

0

e−ikξ f̂(aξ)
sin2(ξ/2)

ξ2(2 + cos(ξ))
dξ

]
.

Since the Butterfly generator ϕ is a second order Riesz generator, the following error bound
of hedging the payoff f with the butterfly basis is obtained by applying equation (5),

(9) ‖f − PMaf‖2 ≤ K4(ϕ)‖f (4)‖2 · a−4 +
√
K4(ϕ)‖f (2)‖2 · a−2,

for a constant K4(ϕ), independent of f .

Remark 1. Note that for f ∈ H+, with the natural extension to f ∈ H by f(x) = 0 for x < 0,
we have

‖f − PMaf‖22 =

∫ 0

−∞
(PMaf(x))

2
dx+

∫ ∞
0

(
f(x)− PM+

a
f(x)

)2

dx

since PMaf(x) = PM+
a
f(x) for x ≥ 0. Hence, ‖f − PM+

a
f‖2 ≤ ‖f − PMaf‖2 for f ∈ H+, so

error bounds given in terms PMa
f (e.g. (9)) will also hold for PM+

a
f .

Remark 2. With the butterfly basis, upon replacing ‖f‖2 with ‖PM+
a
f − f‖2 in the proof of

Theorem 3.1, and combining with the norm convergence in equation (9), we have for some ζ > 0
that

|V ◦ PM+
a
f − Vf | ≤ ζ‖PM+

a
f − f‖2 = O(a−2),

where O(a−2) holds for twice continuously differentiable payoffs. Hence, the convergence in
option prices is governed by the projection convergence. As illustrated in the numerical pricing
experiments, prices converge even faster than predicted.

4.1. The Dual Butterfly Basis. By expanding the dual generator φ̃ itself in the basis gen-
erated by φ, we derive an analytical procedure for approximating hedging coefficients which
can be calculated from f(ST ) itself, rather than its Fourier transform. It also leads in some
cases to analytical formulas for payoff projections, in which case the associated cost is reduced
dramatically. Moreover, we will use this method as a control for the development of efficient
approximations to the true projection.

Corollary 4.2. Let φ ∈ H be a symmetric real-valued Riesz generator with canonical dual

generator φ̃. Then

φ̃ =
∑
m∈Z

αmTmφ, where αm =
1

π

∫ ∞
0

cos(mξ)
φ̂2(ξ)

Φ2(ξ)
dξ.

We can apply Corollary 4.2 to generate the dual of general Riesz generators when more
explicit descriptions are unavailable. It also gives a procedure to check the validity of alternative
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Figure 1. Left: cannonical dual, ϕ̃. Right: comparison of dual method (dashed line) vs. linear
interpolation (dotted line) for a continuous payoff (solid line).

descriptions as we show next for the butterfly basis. Applying Corollary 4.2 to the butterfly
basis generator ϕ, we conclude that ϕ̃ has coefficients

αm =
36

π

∫ ∞
0

cos(xm)
(1− cos(x))2

x4(2 + cos(x))2
dx,

the first five of which are given by

α0 = 1.73205, α1 = −0.46410, α2 = 0.12436, α3 = −0.03332, α4 = 0.00893.

In fact, for the butterfly basis we can obtain a much cleaner description of the dual using
biorthogonality in a different way, which can be verified using the previous Corollary.

Proposition 4.1. The coefficients αm of ϕ̃ with respect to the linear basis converge to zero
exponentially in m. In particular,

(10) ϕ̃(x) =
∑
m∈Z

(
3√
3

(√
3− 2

)|m|)
ϕ(x−m).

Hence, the dual butterfly generator, illustrated in Figure 2, is a piecewise continuous function
which is well approximated over a small, compact interval. In general, we can write

PM+
a
f(ST ) =

∑
k≥0

′
〈f, ϕ̃a,k〉ϕa,k(ST ) =

∑
k≥0

′
〈f,DaTk

∑
m∈Z

αmTmϕ〉ϕa,k(ST )

=
∑
k≥0

′(∑
m∈Z

αm〈f, ϕa,k+m〉
)
ϕa,k(ST ).(11)

The hedge coefficients are given by βk =
∑
m∈Z αmθa,k−m where we define

(12) θa,k := 〈f, ϕa,k〉 =

∫
[ k−1
a , k+1

a ]

f(s)ϕa,k(s)ds.

Compared with (8), this provides an alternative description of βa,k when the Fourier transform

f̂(ξ) is unknown. We discuss an approximation to βa,k in section 5.1 below.

4.2. Localized Projections. Given a complete description of the dual in section 4.1, we are
able to characterize the classes of payoff functions for which butterfly projection methods apply,
relaxing the ostensible requirement that f belongs to L2(R). As a first example, consider the
function f(x) = x for x ∈ R, which is clearly not in L2(R), and fix any interval [L,R] =
[kL/a, kR/a]. Then with projection coefficients βa,k = 〈f, ϕ̃a,k〉 = a−3/2k (derived in section
4.3),

(13) f(x)−
∑

kL≤k≤kR

βa,kϕa,k(x) ≡ 0, ∀x ∈ [L,R].

Hence, the “projection”, localized to [L,R], is a perfect local representation of the payoff. This
localized projection can be used to form a meaningful approximation to a large class of payoffs.
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We define two such classes of L2
loc := {f : f ∈ L2([L,R]),∀L < R ∈ R}, the first is given by

C̄ := {f ∈ L2
loc : ∀a > 0, ‖f‖I

a
m+

2 ≤ C‖f‖I
a
m

2 eventually, where |Cν| < 1},
where eventually is defined as the existence of M (which can depend on a) such that ∀|m| ≥M
the bound holds, Iam := [(m−1)/a, (m+1)/a], and Iam+ := Iam+1·sign(m). The second class, C̄(a),

allows some threshold ā > 0 after which the bound holds for a ≥ ā:

C̄(a) := {f ∈ L2
loc : ∃ā > 0 s.th ∀a ≥ ā, ‖f‖I

a
m+

2 ≤ C‖f‖I
a
m

2 eventually, where |Cν| < 1},

where ν :=
√

3−2 is the constant in Proposition 4.1. For functions in either class, the projection
coefficients are finite, and as we now show, can be approximated arbitrarily closely using only
local knowledge of f (as required by the approximations developed in section 5). This further
allows us to extend the idea of projection to non-L2 payoffs.

Given a function f in either class, with [L,R] = [kL/a, kR/a] a fixed hedge interval, we define
for [kL̄/a, kR̄/a] = [L̄, R̄] ⊃ [L,R] the localized projections

P̄Ma
f(ST ) =

∑
kL≤k≤kR

βa,kϕa,k(ST ), βa,k = 〈f, ϕ̃a,k〉,(14)

P̂Ma
f[L̄,R̄](ST ) =

∑
kL≤k≤kR

β̂a,kϕa,k(ST ), β̂a,k = 〈f1[L̄,R̄], ϕ̃a,k〉.(15)

Here P̄Ma
f is a localized projection which uses global information about f , while P̂Ma

f[L̄,R̄]

uses only local information about f to determine coefficients. The choice of [L̄, R̄] is discussed

in section 5. For localized projection to be meaningful, P̂Ma
f[L̄,R̄] should be a consistent ap-

proximation to P̄Ma
f , which is indeed the case.

Proposition 4.2. If f ∈ C̄, a > 0 and [L,R] is fixed, then ∀ε > 0, ∃[L̄, R̄] such that

‖P̄Ma
f − P̂Ma

f[L̄,R̄]‖2 < ε.

Similarly, if f ∈ C̄(a), ∃ā > 0 such that ∀a > ā fixed and ∀ε > 0, ∃[L̄, R̄] such that the bound
holds. Moreover, both projections are finite. In particular, if f ∈ C̄ then f · ϕ̃a,k ∈ L2(R),
∀a > 0, k ∈ Z, and if f ∈ C̄(a) then ∃ā ≥ 0 such that f · ϕ̃a,k ∈ L2(R), ∀a ≥ ā, k ∈ Z.

Remark 3. As an example of the first class, let f(x) := xp and fix m ≥ 1 and a > 0 (the
argument for m ≤ −1 is analogous). Then(
‖f‖I

a
m+

2

)2

=

∫
Ia
m+

x2pdx =

∫
Iam

(
x+

1

a

)2p

dx =

∫
Iam

(
x2p +

2p−1∑
k=0

(
2p

k

)
xk
(

1

a

)2p−k
)
dx.

The first term in the rightmost integral is
(
‖f‖I

a
m

2

)2

, and by a choice of M sufficiently large

the second term can be dominated by ε ·
(
‖f‖I

a
m

2

)2

for some ε ∈ [0, 1) and all m ≥ M , since

the highest power in x is 2p − 1. Hence ‖f‖I
a
m+

2 ≤
√

1 + ε‖f‖I
a
m

2 . By our choice of M , we can
ensure that ν

√
1 + ε < 1, so xp ∈ C̄. From Proposition 4.2, we have that xp · ϕ̃a,k ∈ L2(R), so

f · ϕ̃a,k ∈ L2(R) for any polynomial f(x) =
∑p
k=0 ckx

k since L2(R) is a vector space. As an
example of the second class, let f(x) := eτx, τ > 0. Then by a change of variable

‖f‖I
a
m+

2 = exp(τ/a)‖f‖I
a
m

2 ,

and a > 0 can be chosen so that | exp(τ/a)ν| < 1. Hence functions with exponential growth
belong to C̄(a).

From Proposition 4.2, for f ∈ C̄, and for f ∈ C̄(a) with a sufficiently large, P̄Ma
f is the limit

in L2([L,R]) of P̂Maf[L̄,R̄] as [L̄, R̄] increases to (−∞,∞). Fortunately, most payoffs of practical
interest belong to one of these classes, so localized projections obtained through truncated
payoffs will converge. For payoffs with isolated singularities, well behaved approximations to
the payoff near singularities can be used to obtain the coefficients of accurate hedges. This will
be demonstrated for the log contract, which is well behaved away from the origin.
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4.3. Closed-Form Localized Projections. In some cases, analytical formulas for the hedge
coefficients βa,k can be derived from the representation in Proposition 4.1. For example, if

f(ST ) := (ST −K)p, p ∈ N,

the coefficients in (12) satisfy

(16) θa,k = C(a, p)
[
(k −Ka− 1)(p+2) − 2(k −Ka)(p+2) + (k −Ka+ 1)(p+2)

]
,

where C(a, p) := a−(p+ 1
2

)

(p+1)(p+2) , which can be used to derive the coefficients for any polynomial at a

negligible cost. However, in the particular case of polynomial payoffs, the exact beta coefficients
are known analytically. Moreover, we can derive the pth moments of ϕ̃, which will be used to
develop efficient approximations to the true localized projection, as discussed in section 4.2.

Corollary 4.3. The pth moment of ϕ̃, Mp, is finite for all p ∈ N, and is given by

(17) Mp =

∫
R

ϕ̃(x)xpdx =


6(ν − 2 + ν−1)√
3(p+ 1)(p+ 2)

· d
p+2

dζp+2

[
1

1− νeζ

∣∣∣∣
ζ=0

, p even

0, p odd,

where ν =
√

3− 2. Hence, the dual coefficients β
[p]
a,k are known analytically for any polynomial:

(18) β
[p]
a,k :=

∫
R

ϕ̃a,k(x)xpdx = a−(p+ 1
2 )

b p2 c∑
n=0

(
p

2n

)
kp−2nM2n.

For example, the first four even moments are found to be

M0 = 1, M2 = −1/6, M4 = 1/15, M6 = 17/84,

and higher order moments are easily derived. Note as well that for any payoff of the form
f(ST ) := (ST −K)p, if K = k̄/a for some k̄ ∈ N, the corresponding coefficients are found by
shifting the index of those for SpT by k̄. Thus, for any K = k̄/a, the localized projection of the
power straddle f(ST ) := (ST −K)2 over [L,R] = [kL/a, kR/a] is given simply by

(19) P̄Maf(ST ) = a−5/2
kR∑
k=kL

[
(k − k̄)2 − 1

6

]
ϕa,k(ST ),

which corresponds to the localized projection in (14). Similarly, the coefficients of f(ST ) :=
(ST −K)3 are found as

βa,k = a−7/2(k − k̄)

(
(k − k̄)2 − 1

2

)
, kL ≤ k ≤ kR.

Given that polynomial payoffs offer exact formulas for the corresponding localized projection,
an immediate consequence is the ability to transform a Taylor series (or other polynomial ap-
proximation method) into a portfolio of liquid contracts. Specifically, if f ∈ Cp+1,

f(ST ) = f(K) +

p∑
n=1

f (n)(K)

n!
(ST −K)n +

f (n+1)(ξ)

(n+ 1)!
, ξ ∈ (L,R).

By projecting the expansion onto {ϕa,k}, the coefficients for kL ≤ k ≤ kR satisfy

βa,k = a−1/2

f(K) +

p∑
n=1

(
f (n)(K)a−n

n!

) bn2 c∑
m=0

(
n

2m

)
(k − k̄)n−2mM2m

 .
For near expiry contracts, low order projected Taylor expansions about St can provide accurate
approximations at a low cost.
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5. Efficient Hedge Calculation

This section describes the implementation of the dual method for hedge coefficient calculation,
and introduces a new method, which we call the Alternative Biorthogonal Sequence (ABS)
method. The ABS method reduces the computational cost while retaining the accuracy of the
dual method. This new approach to function approximation is especially promising for higher
dimensions, with potential applications extending beyond finance.12

In this section, we focus on localized hedges of a payoff f(ST ) over [L,R], which can be
applied to a large class non-L2 payoff functions as discussed in section 4.2. The payoff may
naturally be supported on [L,R], or [L,R] represents a truncation interval. In the latter case,
an extension can be made at the boundaries L and R to form a global hedge (see section 6.5),
after the local hedge is constructed. Information about f on a larger interval [L̄, R̄] ⊃ [L,R]
may be used to calculate hedge coefficients, where the choice of [L̄, R̄] depends on the method
used as detailed below.

5.1. The Dual Method. The first method we consider for calculating hedge coefficients of the
orthogonal projection is based on an approximation of the dual. From Proposition 4.1, with
γ ∈ N+ we can approximate the biorthogonal dual on [−(γ + 1), γ + 1] by

ϕ̃ ≈
∑
|m|≤γ

αmTmϕ.

To obtain a hedge over [L,R] = [kL/a, kR/a] for payoff f(ST ), from (12) we obtain

f(ST ) ≈
kR∑
k=kL

( ∑
|m|≤γ

αm〈f, ϕa,k+m〉
)
ϕa,k(ST ) := fγa (ST ).(20)

Near the boundaries L and R, we can use information about f(ST ) outside of [L,R] in our
coefficient calculation. With γ fixed (we find that γ = 12 is sufficient in general) the enlarged
interval [L̄, R̄] = [L− (γ+ 1)/a,R+ (γ+ 1)/a] contains the full knowledge of f(ST ) that is used
by this method to calculate coefficients, rather than treating f(ST ) as if it were zero outside of
[L,R].13

If we calculate θa = (θa,kL−γ , θa,kL−γ+1, ..., θa,kR+γ) defined by (12), βk is approximated by

(21) βk ≈
∑
|m|≤γ

αmθa,k−m = (α ∗ θ)k,

the circular convolution of θ with α = (α−γ , ..., αγ). The resulting implementation, which we
refer to as the dual method, converges exponentially in γ to the true projection over any hedge
interval [L,R], and for any resolution a > 0. As a result, the size of γ (hence the required
computational effort) increases slowly with higher resolutions. Figure 1 (right) demonstrates
the local behavior of fγa (ST ) compared with interpolation when γ = 12.

Proposition 5.1. Let f be square integrable on [L,R]. With fγa (ST ) defined by (20), the
deviation from the true orthogonal projection, PMa

, is characterized by:

‖fγa − PMa
f‖[L,R]

j ≤ a1/2Cj · τ(γ), j = 1, 2,

where

C1 := (R− L+ 1)3/2‖f‖[L,R]
∞ , C2 :=

2√
3

(R− L+ 1)‖f‖[L,R]
∞ ,

and

τ(γ) :=

(
6

1− ν2

)1/2

νγ+1, ν :=
√

3− 2 ≈ −0.268.

Hence, for any resolution a > 0, the L1 and L2 errors over [L,R] converge exponentially in γ.

12In the supplemental appendix, we present a purely numerical method which works well for smooth payoffs

and can be applied to more general Riesz bases for which F [φ̃] is known.
13For example, at the left boundary k = kL, the approximation of ϕ̃a,kL is supported on [L− (γ + 1)/a, L+

(γ + 1)/a], and similarly for ϕ̃a,kR , which is why we use [L̄, R̄]. Equation (20) is therefore equivalent to the

localized projection in (15).
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In the next subsection, we introduce an alternative to the dual method which approximates
the projection at a reduced cost.

5.2. Alternative Biorthogonal Sequences (ABS). As we noted before, the canonical dual
to a Riesz sequence {φa,k} ⊂ H at any scale is the unique biorthogonal sequence living within
the same space as the Riesz sequence, Ma = span{φa,k}k, and is also a Riesz basis for Ma.
However, our search for biorthogonal sequences (as opposed to duals) is not limited to Ma.
For a given Riesz sequence {φa,k}, we will refer to any sequence in H which is biorthogonal to

{φa,k} (that is, 〈φa,k, φ̆a,j〉 = 1{k=j}) as an alternative biorthogonal sequence (ABS). By using
an ABS instead of the canonical dual to approximate the hedging coefficients, an approximation
to the true orthogonal projection is obtained, often at a significant reduction in computational
effort. This is especially promising for higher dimensional extensions, which are left for future
research. To ensure that convergent representations are still obtained, the ABS must satisfy a
Bessel upper bound. This can be trivial to verify with the following proposition.

Proposition 5.2. ( [15], p.63) Let {Ψk}k∈K ∈ H be any sequence satisfying
∑
k∈K |〈Ψj ,Ψk〉| ≤

B, ∀j ∈ K, where B > 0 is some constant. Then {Ψk} is a Bessel sequence with bound B.

Likewise, we will make use of the fact that a frame sequence, as opposed to a frame for all of
H, is actually a Bessel sequence on H.

Lemma 5.1. If {Ψk}k∈K is a frame sequence in a Hilbert space H, then {Ψk}k∈K is a Bessel
sequence (on all of H). That is, for some B > 0,

∑
k∈K |〈f,Ψk〉|2 ≤ B‖f‖22, ∀f ∈ H.

With the previous two results in hand, we can characterize an ABS approximation, denoted
by P̆ , which is most appropriate for our purposes. With Ma := span{φa,k}k∈Z, we have

(22) P̆Ma
f :=

∑
k∈Z
〈f, φ̆a,k〉φa,k, f ∈ H.

Proposition 5.3. Let φ be a Riesz generator in H. If φ̆ ∈ H is a compactly supported function

such that the sequences of translates {φ1,k} and {φ̆1,k} are biorthogonal, then for a > 0 the

mapping P̆Ma
: H →M defined in equation (22) is a bounded linear projection operator on M

which commutes with the orthogonal projection PMa
of H onto M. However, P̆Ma

= PMa
iff

PMa is the null operator on M⊥a , that is P̆Ma(M⊥a ) = {0}, which occurs iff φ̆1 ∈M1.

By commutativity, the true projection preserves that of the ABS and conversely. While we
can design an ABS to provide identical representations as the dual for polynomials of arbitrarily
high order (as below), there will always be f ∈ H for which the ABS and orthogonal projections
disagree. However, as shown in Proposition 5.5 below, ABS projections and value approxima-
tions converge to the true values, and they also converge at the same rate, up to a constant
which depends on the ABS design.

ABS Construction. In the butterfly case, starting at the initial resolution, we begin our search
for a viable ABS at one higher resolution and supported on [−1, 1], posited to be a symmetric
linear function of the form:

ϕ̆(x) =

{
λ− 2(λ+ ν)x, [0, 1/2)

−2ν(1− x), [1/2, 1],

for some constants λ, ν, where ϕ̆(x) = ϕ̆(−x) for x ∈ [−1, 0]. To solve for λ, ν, we use (i)∫ 1

0
ϕ(x)ϕ̆(x)dx = 1/2 (by symmetry, since

∫ 1

−1
ϕ(x)ϕ̆(x)dx = 1) and (ii)

∫ 1

0
ϕ(x)ϕ̆(x− 1)dx = 0,

which follows from symmetry and biorthogonality. These conditions yield the following.

Result 5.1. The butterfly basis, with generator ϕ and scale parameter a > 0 fixed, admits an
ABS with generator

ϕ̆[1](x) =

{
3− 7|x|, |x| < 1/2

|x| − 1, 1/2 ≤ |x| ≤ 1.
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Figure 2. Left: ABS1 generator supported on [−1, 1]. Right: ABS2 generator on [−2, 2].

We designed the ABS generator ϕ̆[1] shown in Figure 2 to have narrow support, thereby reduc-
ing the computational burden of calculating the hedge coefficients, while mitigating boundary
effects14. Note as well that by imposing symmetry of ϕ̆[1] about the origin the following odd
moments condition is satisfied:∫

R
ϕ̆[1](x) · x2p+1dx =

∫
R
ϕ̃(x) · x2p+1dx = 0, p ∈ N.

By increasing the support of ϕ̆ to [−2, 2], we gain an additional degree of freedom with which
we impose a second moment condition, which is solved for to obtain the ABS denoted by ϕ̆[2]:∫

R
ϕ̆[2](x) · x2dx =

∫
R
ϕ̃(x) · x2dx = −1

6
,

from Corollary 4.3 (where we recall the butterfly basis dual generator from (10)). We show in
Proposition 5.4 that specifying an ABS by equating its first γ moments to those of the dual is
tantamount to obtaining the true projection15 for all polynomials of degree p ≤ 2γ − 1.

In general, we define an ABSγ generator as the ABS generator supported on [−γ, γ] for which
all moments p ≤ 2γ − 1 coincide with the true dual (in addition to sharing all odd moments by
the imposition of symmetry). The ABSγ generators are of the form

(23) ϕ̆[γ](x) =
∑

|m|≤2γ−1

c[γ]
m ϕ(2x−m) =

∑
|m|≤2γ−1

2−1/2c[γ]
m ϕ2,m(x),

where c
[γ]
m are determined as follows.

Proposition 5.4. For any γ ≥ 2, the unique set of coefficients c
[γ]
m , |m| ≤ 2γ − 1, for which

ϕ̆[γ] is an ABSγ generator is given by the solution of the system

1 = λ0c0 + 2λ1c1 + 2λ2c2

0 = λ2(c2k−2 + c2k+2) + λ0c2k + λ1(c2k−1 + c2k+1), 1 ≤ k ≤ γ − 2

0 = λ2c2γ−4 + λ0c2γ−2 + λ1(c2γ−3 + c2γ−1)

0 = λ2c2γ−2 + λ1c2γ−1

M2k =
2−2k

(2k + 1)(2k + 2)

(
c0 +

2γ−1∑
m=1

cmν
2k
m

)
, 1 ≤ k ≤ γ − 1,

where

(24) ν2k
m = (m− 1)2k+2 − 2m2k+2 + (m+ 1)2k+2, m = 1, ..., 2γ − 1,

(25) λ0 = 5/12, λ1 = 3/12, λ2 = 1/24,

14We have found the ABS generated by ϕ̆[1] to roughly double the approximation accuracy of interpolation
in terms of hedging and pricing errors. However, the ABS2 defined below provides a substantial improvement,
especially for pricing, and the added cost is insignificant.

15We mean this in the sense of localized projections discussed in section 4.2. In particular, the projection
coefficients βa,k for a > 0 and k ∈ Z will agree for all such polynomials, which themselves do not belong to H.
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ck = c−k ∀1 ≤ k ≤ 2γ − 1, and M2k are the dual moments which are found by equation (17).
Moreover, the ABSγ coefficients agree with the orthogonal projection coefficients from Corollary
4.1 for all polynomials of degree p ≤ 2γ − 1, and for all odd degrees.

Application of Proposition 5.4 leads to the ABS2 generator, which very closely approximates
the coefficients obtained by the true dual for the functions tested.

Result 5.2. The ABS2 generator is given by ϕ̆[2](x) =
∑
|m|≤3 c|m|ϕ(2x−m), where

(c0, c1, c2, c3) =

(
2,

5

12
,−1

2
,

1

12

)
,

and is depicted in Figure 2.

ABS2 Implementation. We now outline the steps required to calculate coefficients for the ABS2

method. From Result 5.2, the ABS2 projection over [L,R] is given by

(26) f(ST ) ≈
kR∑
k=kL

〈f, ϕ̆[2]
a,k〉ϕa,k(ST ), ϕ̆

[2]
a,k(x) =

1√
2

∑
|m|≤3

c|m|ϕ2a,2k−m(x),

which requires the calculation of

(27) βa,k = 〈f, ϕ̆[2]
a,k〉 =

∑
|m|≤3

c|m|θ2a,2k−m, k = kL, . . . , kR,

where θ2a,2k−m is again defined by (12). Hence we use knowledge of f on [L̄, R̄] := [L−2∆, R+
2∆] to determine ABS2 coefficients.16

From (27), we find θ2a,j for j = 2kL − 3, . . . , 2kL + 2a(R−L) + 3, which arise from θ2a,2k−m
as k runs over k = kL, . . . , kR, and m = −3, . . . , 3. The first step is to calculate

θ2a,j :=
1√
2

∫
[ j−1

2a ,
j+1
2a ]

f(s)ϕ2a,j(s)ds

= 2a3/2

[∫
[ j−1

2a ,
j

2a ]

f(s)

(
s− j − 1

2a

)
ds+

∫
[ j2a ,

j+1
2a ]

f(s)

(
j + 1

2a
− s
)
ds

]
,

where θ2a,0 is centered over 0. Using a Newton-Cotes rule reduces the number of required
function evaluations by uniform sampling. As an example, a simple application of Simpson’s
rule with function values sampled over η4a,l := L + l/4a, l = −7, ..., 4a(R − L) + 7 yields the
approximation for n = −3,−2, . . . , 2a(R− L) + 3

(28) θ2a,2kL+n =
a−1/2

6
[f(η4a,2n−1) + f(η4a,2n) + f(η4a,2n+1)] +O(a−5),

where the convergence rate is understood in the context of sufficiently smooth functions. The
coefficients βa,k are then found from (27) for k = kL, . . . , kR.

ABS Convergence. Using a well designed ABS, the computational expense can be reduced,

without compromising consistency as the strike space is refined. As long as {Tkφ}k and {Tkφ̆}k
are biorthogonal, by a change of variables 〈φj,k, φ̆j,m〉 = 〈Tkφ, Tmφ̆〉 = δk,m, so biorthogonality is
preserved from one resolution to the next (recall the multiresolution notation from section 3.2.1).

If P̆jf =
∑
k∈Z〈f, φ̆j,k〉φj,k denotes the ABS projection operator defined on the refinement

Uj := span{φj,k}k∈Z,

P̆jP̆jf =
∑
m

〈∑
k

〈f, φ̆j,k〉φj,k, φ̆j,m
〉
φj,m

=
∑
m

(∑
k

〈f, φ̆j,k〉δk,m
)
φj,m =

∑
k

〈f, φ̆j,k〉φj,k,(29)

so P̆jP̆jf = P̆jf . We then have the following:

16At the left boundary kL, θ2a,2kL−m for m = 3 requires f(x) defined on [L− 2∆, L+ 2∆], while at the right

boundary kR, θ2a,2kR+m for m = 3 requires f(x) defined on [R − 2∆, R + 2∆]. For a general ABSγ method,

[L̄, R̄] = [L− γ/a,R+ γ/a].
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Proposition 5.5. Let φ ∈ H be an RMRA generator, and φ̆ a compactly supported ABS
generator. Then

lim
j→∞
‖P̆jf − f‖2 = 0, and lim

j→∞
|V ◦ P̆jf − Vf | = 0,

where P̆j is a bounded linear (non-orthogonal) projection of H onto Uj, for all j ∈ N. In fact,

for each f ∈ H, ‖P̆jf‖2 is uniformly bounded over j ∈ Z. Moreover, for some j′ ∈ N, and all

j ≥ j′, we have ‖P̆jf − f‖2 ≤ C1‖Pjf − f‖2 and |V ◦ P̆jf − Vf | ≤ C2‖Pjf − f‖2 for some
constants C1, C2 independent of f .

From Proposition 5.5, not only does the ABS projection converge, but it does so at the same
rate as the true projection (with same generator) up to a constant, and similarly for value
approximations. For the butterfly basis, the convergence rate is O(2−2j).

5.3. Choice of Butterfly Methods. The main appeal of ABS methods is that rather than
integrating the payoff against ϕ̃a,k, which has infinite (though safely truncated) support, we
can obtain accurate approximations by integrating the payoff against an ABS dual with much
narrower support. Hence, not only do the coefficients requires less work to obtain, ABS methods
are more robust to the presence of discontinuities (which affect fewer coefficients) and are better
equipped to handle isolated singularities than the dual method of section 5.1. From Propo-
sition 5.5, ABS methods converge at the same rate as the true projection, up to a constant.
Through experimentation, we find that the ABS2 projector provides accurate approximations
which closely match the true dual for smooth functions, and outperform with discontinuous
payoffs (such as those in section 6.4). Given in addition its computational advantage, the ABS2

projector is recommended.

6. Applications

We now demonstrate the effectiveness of the frame projection approach to hedging with
several examples. After illustrating the decomposition of a butterfly basis hedge in terms of
traded vanilla instruments, we consider exotic option hedging in an S&P 500 index market, a
Russell 2000 index market, and a market for Henry Natural Gas. Simulation studies are used to
analyze the hedging methodology for variance swaps and barrier options under the Heston and
SABR stochastic volatility models, illustrating the application of static, semi-static, and mixed
static-dynamic hedging. The application to exotic option pricing is considered in Appendix A.

6.1. From Butterflies to Plain “Vanilla” Payoffs. By construction, we can utilize the
butterfly basis to approximate a given payoff f , which can then be expressed simply in terms of
a payoff position in the underlying ST , one strike of a put payoff ψputK (ST ) = (K − ST )+, and
call payoffs ψcallK (ST ) = (ST −K)+ with strikes along the support of f :

Result 6.1. Let f ∈ H+, and suppose we have an order K̄ + 1 approximation of f in terms of
the scale-a butterfly basis given by

f(ST ) ≈ β0ϕa,0(ST ) +
∑

1≤k≤K̄

βkϕa,k(ST ),

where the βk for k ≥ 0 are computed by any means. Noting that ϕa,0(ST ) = ψput1
a

(ST ), we have

the following static hedge in terms of positions in liquid assets:

f(ST ) ≈ a3/2
[
β0ψ

put
1
a

(ST ) + β1ST +
∑

1≤k≤K̄+1

ccallk · ψcallk
a

(ST )
]
,

where the call positions are given by

ccallk =


β2 − 2β1 k = 1

βk−1 − 2βk + βk+1 k ∈ {2, ..., K̄ − 1}
βK̄−1 − 2βK̄ k = K̄

βK̄ k = K̄ + 1.
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Figure 3. Butterfly basis in terms of call options along some grid {xk}, where φcall(xk) is a call option
with strike xk.

Note too that we can avoid holding the asset itself if we use the put representation of

ϕa,1(ST ) = a3/2
[
ψput2
a

(ST )− 2ψput1
a

(ST )
]
. Figure 3 illustrates the butterfly basis decomposi-

tion into call option positions. In effect, the butterfly basis takes a set of vanilla payoffs which
are not members of H and fashions a Riesz basis to which the theory and algorithms apply.17

Similarly, an out-of-the money butterfly representation (analogous to (2)) is simple to derive
from the relationship

a−3/2ϕa,k(ST ) = ψputk−1
a

(ST )− 2ψputk
a

(ST ) + ψputk+1
a

(ST ).(30)

With S0 denoting the current market price of the underlying, by utilizing puts for butter-
fly elements with k < S0 and calls for k > S0, one can derive an out-of-the-money (OTM)
representation. Specifically, we assume that vanilla options are available over18 the interval
[L − 1/a,R + 1/a] with listed strikes {L − 1/a, L, L + 1/a, ..., R,R + 1/a}, where [L,R] is the
desired support for our hedge and S0 ∈ [L,R]. We assume that R = L+ K̄/a for some K̄ ∈ N,
so that K̄ = (R − L)/a. Now define βLk := βkL+k, where kL := L/a, so βL0 corresponds to the

basis element centered over L, βL1 corresponds to L+ 1/a, and so on. With ζcallk (ζputk ) denoting
the portfolio holdings in a strike L+ k/a call (put), we obtain an OTM representation as

ζputk = a3/2[βLk−1 − 2βLk + βLk+1], k = 0, ..., k∗ − 1

ζput−1 = a3/2βL0 , ζputk∗
a

= a3/2[βk∗−1 − 2βk∗ ], ζputk∗+1
a

= a3/2βk∗

ζcallk = a3/2[βk−1 − 2βk + βk+1], k = k∗ + 2, ..., K̄

ζcallk∗
a

= a3/2βk∗+1, ζcallk∗+1
a

= a3/2[βk∗+2 − 2βk∗+1], ζcallK̄+1
a

= a3/2βK̄

where k∗ = b(S0−L)/ac. In practice, the set of available strikes will dictate our choice of which
instruments to include in a hedge, namely our selection of [L,R]. For liquid products such as
S&P 500 index options, active trading occurs for uniformly spaced strikes surrounding the ATM
strike, although trading is not limited to contracts which have open interest (there is a higher
transaction cost associated with less liquid strikes).

For example, on December 17, 2015, with a market close of 2,041.89 USD on the S&P 500
index, strikes for December 2015 options are quoted in increments of 5 USD from about 1,300
USD to 2,250 USD (see for example CBOE), straddling the current index level. Beyond these
boundaries, the granularity increases, and likewise as the time to maturity grows, although a
similarly fine strike space is observed for several months following the prompt month. At a
maturity of two years (December 2017), a granularity of 25 or 50 USD is to be expected. As a

17While it is useful to unwind a butterfly hedge in terms of underlying options, trading the butterfly positions
themselves has an advantage with respect to the margining practices used by clearing houses, since the finite risk
associated with such products is well understood, and margins are set accordingly.

18Otherwise a representation purely in terms of calls or in terms of puts is available.
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Figure 4. A plot of scaled butterfly prices, a−1/2{V ◦ ϕa,k}k≥0, for three test cases with a = 210.

static hedge draws closer to maturity, the portfolio can be adjusted to add finer granularity if
desired.

Remark 4. Given a representation in terms of vanilla instruments, the approximate value for an
exotic payoff may be obtained directly from market quotes of vanilla instruments. In this case,
smile effects are imputed in the prices obtained. One can also obtain model-based prices by
pricing the vanillas (or butterflies) using a standard pricing method for the chosen model. As
illustrated in Appendix A, value approximations of projected payoffs converge very quickly with
respect to the resolution of the payoff projection. The set of butterfly basis values is illustrated
in Figure 4 for the three test cases considered in the appendix, where, at fine resolutions a
smooth risk-neutral density emerges. This reflects the Breeden and Litzenberger result [5],
∂
∂KP[ST ≤ K] = erT ∂

2PT
∂K2 (K;S0), where PT (K;S0) is the price of a strike-K put, when one

considers the relation between (30) and the second derivative.

6.2. Static Hedging: Exotic European Options.

Example 1: Russell 2000 Market. In this example, we consider a market for capped power
straddles written on the Russell 2000 (RUT) index. With a closing price of 1,365.26 USD on
March 10, 2017, European option strikes are listed on [500, 1700], at increments of 5 USD near
the money, and 10 USD away from the money.19 We consider a capped power straddle

f(ST ) = (ST −K)2
1|ST−K|≤C + (C −K)2

1|ST−K|>C ,

which reduces the extreme payoff risk (for the seller) from a standard power straddle (discussed
in section 2.1), and fix K = 1365 to be near the money and C = 80. We simulate 10,000 paths
each of a Heston and SABR model, with parameters listed in Table 1. Heston’s model [29]
prescribes the dynamics

(31)

{
dSt = µStdt+

√
νtStdW1,t

dνt = κ(θ − νt)dt+ σν
√
νtdW2,t,

where W1,t and W2,t are correlated Brownian motions, with correlation ρ ∈ (−1, 1). Similarly,
the SABR model [26] posits

(32)

{
dSt = µStdt+ νtS

β
t dW1,t

dνt = ανtdW2,t,

where β ∈ (0, 1). For each ∆ fixed, hedges for both methods are formed from the strikes in
[L,R] = [K − C,K + C]. For this example, the payoff is bounded outside of [L,R], and it is
simple to form a global hedge by flat extrapolating the payoff from each of the boundaries L and
R using vanilla options (as discussed in the supplemental appendix). This global hedge matches
the capped payoff outside of [L,R]. For payoffs of this type, which are linear outside of [L,R],
there is no tail risk since we can replicate them globally with vanilla options.

19The last few strikes on either boundary are at increments of 50 USD.
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Heston SABR
∆ Method Avg.Err. MAD Std Max.Err. Avg.Err. MAD Std Max.Err.

5 ABS2 0.006 1.308 1.671 4.319 0.025 1.599 1.853 4.162
5 Interp 3.324 3.324 2.353 6.250 4.192 4.192 1.853 6.250
10 ABS2 0.010 5.008 6.557 17.287 -0.624 6.458 7.512 16.658
10 Interp 11.859 11.859 9.801 25.000 16.043 16.043 7.512 25.000
20 ABS2 0.196 18.125 24.995 69.439 -21.547 29.201 27.277 66.630
20 Interp 34.770 34.770 39.699 100.000 45.533 45.533 27.581 100.000

Table 1. Capped power straddle simulated hedge error for Russell 2000 example: S0 = 1365.26, K =
1365, C = 80, T = 1/12. Heston: µ = 0.02, ν0 = (0.14)2, σv = 0.15 , κ = 3, ρ = −0.6, θ = v0. SABR:
µ = 0, ν0 = (0.14)2, α = 0.15, β = 0.9, ρ = −0.6.

Table 1 documents the hedging errors in USD for ABS2 and interpolation for the two sto-
chastic volatility models for ST . At each resolution available in the market the ABS2 method
outperforms interpolation in terms of Average Error, Mean Absolute Deviation (MAD), Stan-
dard Deviation (Std), and Maximum Absolute Error (Max.Err.). In particular, the MAD is
significantly higher for interpolation at each resolution in both models. For this payoff, inter-
polation systematically overhedges (while for a concave payoff such as the log contract, it will
always underhedge). In contrast, projection balances errors from over and under hedging, lead-
ing to a much smaller error on average (see Avg.Err. column). We also note that the maximum
error is much larger for interpolation.

Remark 5. In practice, the choice of resolution is based on the application objectives, and the
tolerance (as well as definition) for hedging error may vary. For any fixed resolution, frame
projection provides a formula for the quantity of instruments to hold at each strike. The pre-
vious example considers four practical metrics: average error, MAD, standard deviation, and
maximum error. These metrics can be computed for the error of the physical payoff, or based on
the results of a simulated model of interest. If the resulting error tolerance in any given metric
is not met, the resolution can be increased up to granularity of listed strikes.

Example 2: S&P 500 Market. The previous example shows the improved performance of frame
projection for simulated asset paths. In general, we find that frame projection offers a consistent
improvement over linear interpolation for arbitrary payoffs. To illustrate this, we provide three
nonstandard exotic European payoff examples for the S&P 500 market from section 6.2 with
[L,R] = [1300, 2200] selected to match the available strikes. The first is a power straddle with
rational exponent, the second is a Gaussian-style payoff, and the third is the product of a power
straddle with a damping term log(ST )/ST . For each of these payoffs, we consider strikes which
are spaced uniformly ∆ USD apart, with ∆ ∈ {100, 50, 25, 10, 5}, and record the relative absolute
hedge error (RAHE) defined by

(33) RAHE =

∑Ns
i=1 |f̃[L,R](xi; a)− f(xi)|∑Ns

i=1 |f(xi)|
,

where {xi}Nsi=1 is a uniform sampling of [L,R], and f̃[L,R](xi; a) is the prescribed approximation
on [L,R] at resolution a (∆ := 1/a). For this comparison, we have isolated the local error by
restricting to [L,R]. Interpolation can be represented in the butterfly basis by

f Interp[L,R] (ST ; a) =
∑

kL≤k≤kR

a−1/2f
(k
a

)
ϕa,k(ST ).

Comparing the ABS2 method to linear interpolation in Table 2, we see that interpolation
incurs about 2.6 times the error of the ABS2 method, and the difference in computational effort
is negligible. Experimenting with many smooth payoff forms, an interesting finding is that a
constant of about 2.6 holds in general, while this constant holds for non-smooth payoffs once a
threshold resolution is reached. For the first example payoff, which is non-smooth, the threshold
is reached for ∆ between 100 and 50. This indicates a systematic error reduction when using
frame projection over interpolation, which holds in general. The alternative model-free method
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f(ST ) = |ST −K|6/5

Scale(∆) 100 50 25 10 5

Interp 1.335e-02 1.757e-03 4.703e-04 8.084e-05 2.111e-05
ABS2 1.056e-02 6.663e-04 1.788e-04 3.082e-05 8.061e-06
Ratio 1.264 2.637 2.630 2.623 2.619

f(ST ) = (R− L)1/2 · exp
(
−
(
(ST −K)/(R− L)

)2)
Scale(∆) 100 50 25 10 5

Interp 1.739e-03 4.344e-04 1.086e-04 1.737e-05 4.342e-06
ABS2 6.739e-04 1.675e-04 4.181e-05 6.686e-06 1.671e-06
Ratio 2.580 2.594 2.597 2.598 2.598

f(ST ) = log(ST ) · (ST −K)2/ST

Scale(∆) 100 50 25 10 5

Interp 2.665e-02 6.667e-03 1.667e-03 2.667e-04 6.668e-05
ABS2 1.025e-02 2.565e-03 6.415e-04 1.027e-04 2.566e-05
Ratio 2.601 2.599 2.598 2.598 2.598

Table 2. RAHE of three payoffs on [L,R] = [1300, 2200], corresponding to the S&P 500 example, with
payoff strike set to K = (L + R)/2. Ratio gives the ratio of the RAHE for interpolation (Interp) over
that of ABS2. The errors are taken relative to a uniformly sampled “value” over the interval [L,R].
The values for the three payoffs are respectively 694.125, 27.677, 297.574.

of Carr-Madan is not reported, as frame projection and interpolation are orders of magnitude
more accurate, even for smooth payoffs.

6.3. Mixed Static-Dynamic Hedging: Variance Swaps. Due to the inextricable presence
of volatility in the trading of many derivative products, extensive markets have developed to ex-
change volatility contingent securities. An especially important product is the realized variance
swap. Given a set of trading dates {t0, ..., tn} at which an investor can trade in (generic) futures
contracts with prices denoted by Fi, a standard variance swap specification is the terminal payoff
V Sn −K, where

(34) V Sn =
N

n

n∑
i=1

ln2

(
Fi
Fi−1

)
,

and N is a trading day count specified in the contract. From Carr and Lee [10], a semi-static
hedging strategy can be used to offset a position in the variance swap. In terms of the simple
returns Ri := (Fi − Fi−1)/Fi−1, i = 1, ..., n, a Taylor series expansion yields

ln2

(
Fi
Fi−1

)
= 2Ri − 2(lnFi − lnFi−1)− 1

3
R3
i +O(R4

i ),

from which

V Sn =
N

n

[
n∑
i=1

2

Fi−1
(Fi − Fi−1)− 2(lnFn − lnF0)− 1

3

n∑
i=1

R3
i +

n∑
i=1

O(R4
i )

]
.

The first term in the approximation represents a dynamic position in futures contracts, namely
a holding of

(35) e−r(tn−ti)
N

n

2

Fi−1

futures contracts during the period ti−1 to ti. Given the existence of a traded log contract
(as advocated in [38]), g(Fn) = −2(lnFn − lnF0) represents a static position initiated at t0.
In the absence of log contracts, the methods presented in this paper facilitate the accurate
approximation of such contracts in terms of liquidly traded assets, namely call and or put
options.
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Heston SABR
∆ Method MAD Std Max.Err. MAD Std Max.Err.

0.10 Exact 0.107 0.152 1.344 0.127 0.198 2.824
0.10 ABS2 0.701 0.836 4.396 0.714 0.860 4.769
0.10 Interp 1.820 0.880 6.078 1.807 0.891 9.913
0.10 CM 10.081 12.730 52.988 10.554 13.400 71.287
0.20 Exact 0.107 0.154 3.264 0.125 0.193 2.782
0.20 ABS2 2.787 3.325 13.380 2.787 3.320 16.173
0.20 Interp 7.323 3.618 27.773 7.359 3.681 26.474
0.20 CM 15.583 19.623 92.848 16.400 20.596 81.585

Table 3. Variance swap hedge errors for Henry Natural Gas example: F0 = 3.07, T = 0.5, n = 100,
µ = 0.02, r = 0.02. Heston: ν0 = (0.14)2, σv = 0.15 , κ = 3, ρ = −0.6, θ = v0. SABR: ν0 = (0.4)2,
α = 0.4, β = 0.9, ρ = −0.6.

Example: Henry Natural Gas. As an example, consider the case of NYMEX Henry Hub Natural
Gas Futures, with December 2018 expiry and futures settlement price of F0 = 3.070 USD per
mmBtu (million British thermal units) on March 12, 2017. A contract unit is 10,000 mmBtu.
Consider a six month realized variance swap, written on one unit of the December 2018 futures
contract, with 100 monitoring dates prior to expiry of the variance swap.20 Cash settled vanilla
European option strikes are listed from 0.60 to 18.00 (price normalized), at increments of 0.05.

Table 3 compares the hedge performance of one contract unit of a variance swap written on
V Sn, with N/n := 1 for simplicity. We simulate 10,000 paths each of a Heston and SABR
model, with parameters listed in Table 3. At each of n = 100 monitoring dates, the portfolio
is rebalanced according to the dynamic futures position in (35). The hedging strategy also
requires a static payoff of g(Fn) = −2(lnFn − lnF0). The method labeled “Exact” represents
the strategy which holds this (untraded) log payoff, while ABS2, Interp (interpolation), and
CM (Carr-Madan) use their respective approximations for the log contract in terms of vanilla
instruments with strikes in [L,R] = [0.6, 18.00]. Unlike the capped power straddle considered
in section 6.2, in this case we cannot perfectly match the payoff outside of [L,R]. To mitigate
tail risk, the ABS2 and interpolation methods use a linearly extrapolated vanilla hedge at the
boundaries L and R, which is detailed in the supplemental appendix (this is one way to form
a global hedge from a local one).21 Finally, the outcome of each strategy is compared with the
exact formula for realized variance (34) to determine the hedge error.22

From Table 3, ABS2 outperforms interpolation and the CM approach at each resolution, which
are chosen to match market availability. The baseline “Exact” method is not implementable
in practice, and is used as a benchmark. For both the Heston and SABR dynamics, the ABS2

results in an improved mean absolute deviation (MAD), standard error (Std), and maximum
absolute error (Max.Err.). In particular, MAD is less than half that of interpolation.

6.4. Semi-Static Hedging: Barrier Options. As demonstrated in [7, 8], barrier options,
which are actively traded in currency markets, are natural candidates for semi-static hedging.
While the ability to perfectly hedge such contracts depends on very specific market conditions,
such as a Black-Scholes-Merton (BSM) economy, and the assumption that portfolios can be
liquidated immediately upon barrier breach and at the BSM price, imperfect hedging is still
possible under relaxed assumptions. Moreover, in cases where delta hedging is known to fail
dramatically such as for down-and-out put (DOP) and up-and-out-call (UOC) contracts [37],
the performance of semi-static hedging is much more satisfactory, although it is still far from a
perfect hedge.

20For simplicity, we assume uniform monitoring for this particular simulation.
21The Carr-Madan approach also results in a linearly extrapolated hedge given a finite set of strikes on [L,R].

The implementation of Carr-Madan follows from a discretization of equation (2) (see [45] for details).
22Note that the payoff V Sn −K of a strike K variance swap adds a cash position to each hedge, and has no

affect on the hedge error.
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Figure 5. Pricing error for continuous monitoring as a function of the number of strikes N for a DOP
with K = 100 and B = 80 (left) and a UOC with K = 100 and B = 120 (right). Comparison of linear
interpolation and ABS2 when the approximated adjusted payoff is sold. BSM model: σ = .18, r = .06,
d = .02, T = 1.

In the following set of experiments we consider the problem of semi-static hedging a DOP
option, as discussed in section 2.2, where the adjusted payoff is defined as

(36) f̃(ST ) =

(K − ST )+ if ST > B

−
(
ST
B

)p (
K − B2

ST

)+

if ST ≤ B

with strike K, barrier B < K, interest rate r ≥ 0, dividend yield d ≥ 0, volatility σ > 0, and
p := 1 − 2(r − d)/σ2. The adjusted payoff is constructed using a prescribed volatility (for now
it is taken to be σ, the true market volatility), and a butterfly hedge is established in vanilla
options using the ABS2 methodology. In particular, we set [L,R] = [B2/K,K], fix a number
N , and obtain the butterfly coefficients at strikes L + k/a for k = 0, ..., K̄ := N − 1, where
a := (R − L)/K̄. In this example, the payoff is zero outside of [L,R], and the hedge is entirely
local. By setting the coefficients at L (k = 0) and R (k = K̄) equal to zero, we obtain a hedge
that requires N strikes in vanilla options.

For each experiment, we simulate the underlying dynamics up to the first barrier breach, or
contract expiry T = 1, whichever occurs first. If breach occurs, the vanilla portfolio is liquidated
at the BSM prices, and is then discounted to obtain the profit and loss (P&L) for that simulation
run (at breach, the true adjusted payoff has zero value). Otherwise, the portfolio results in a
European-style payoff at time T , and the difference between this payoff and (K − ST )+ is
discounted to the present to obtain the P&L.

Figure 5 illustrates the difference in pricing error (profit and loss) that occurs when selling
the vanilla portfolio for each of the two methods linear interpolation and ABS2 as a function of
N . The left panel considers a DOP option with K = 100 and B = 80, and the right panel a
UOC option with K = 100 and B = 120. In both cases, the time to maturity is T = 1 and the
portfolio is sold exactly when the underlying touches the barrier, so the only source of error is
in approximating the adjusted payoff. In both cases the ABS2 methodology outperforms linear
interpolation, for small (practical) values of N as well as when N is taken very large. The
difference in errors is most pronounced for small values of N .

For the remaining experiments, monitoring is allowed every other day (M = 252/2 monitoring
dates), so if a breach occurs the underlying can drift significantly away from the barrier prior to
liquidating the vanilla portfolio, resulting in a nonzero P&L. Hence, there are now two sources of
error: the error arising from approximating the adjusted payoff, as well as the error from a drift
in the underlying away from the barrier at liquidation. With a finite monitoring frequency, even
the true adjusted payoff results in an imperfect hedge. The simulation is then repeated 10,000
times, and relative P&Ls are recorded, where each P&L is relative to the discretely monitored
DOP option value. In all experiments r = 0.06 and d = 0.02.
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Figure 6. The left panel illustrates the DOP adjusted payoff for a contract with strike K = 70 and
knock-out barrier B = 50, along with the ABS2 approximation with N = 9 options, uniformly spaced
within (B2/K,K). Additional parameters: r = .06, d = .02, T = 1, M = 252/2, σ = .18, S0 = 65. The
right panel illustrates the profit and loss for the semi-static hedging strategy in a discretely monitored
BSM market, where each bar represents the outcome of a single simulation.

Figure 6 illustrates the butterfly approximation to the adjusted payoff (left) using N = 9
options, as well as the P&Ls for the first 500 simulations (right). Note that the previous example
illustrates the error that occurs when the underlying is equal to the barrier upon liquidation,
and the true adjusted payoff should have zero value. However, this value becomes nonzero as the
underlying deviates from the barrier prior to liquidation. Moreover, in the absence of a breach,
the adjusted payoff does not always coincide with the vanilla option at delivery. These errors
can be relatively large, as seen in the right panel of Figure 6. Unlike the second source of error,
the first of these can be mitigated by increasing the monitoring frequency.

Remark 6. Given that the alternative to semi-static hedging is a dynamic hedging strategy, we
replicate an experiment in [37] to obtain a context for the errors observed with our framework.23

A UOC contract with K = 110, B = 140 and S0 = 100 is considered in a BSM model where
σ = 0.2, and other parameters are as before. Relative to the price 2.277 (calculated in [37]),
the delta hedging strategy has a mean error of -0.007 and standard deviation of 0.949. This
compares to a mean error of -0.077 and a standard deviation of 0.5036 with the ABS2 method
using N = 11 options. While the mean error is somewhat larger, dynamic hedging is nearly
twice as risky when measured by standard deviation. While not reported for dynamic hedging,
the relative min and max deviation for ABS2 were -9.34 and 1.89 respectively, so even with half
the standard deviation of dynamic hedging, large errors can still be expected. Under the same
conditions, the STR-static method of [37] performs similarly as frame projection in this case
with a standard deviation of 0.523, but with more than twice the relative mean error at 0.164.
The CAL-static method results in a mean error of 0.09, but with a standard deviation of 0.628,
again both higher than frame projection.

Table 4 illustrates the performance of the semi-static hedging strategy for a DOP contract
with K = 70 and B = 60, in terms of the mean error (mean), mean absolute deviation (MAD),
minimum error (min), maximum error (max) and standard deviation of errors (std), all relative
to the discretely monitored option value with the same monitoring frequency. As the number
of vanilla options, N , increases, we expect that the approximation error and standard deviation
should decline. While this is typically true, the convergence is far from monotone, and due to
the discrete monitoring frequency there will be errors associated with the hedging policy even
in the limit.

23Implementing the dynamic delta hedge is a delicate matter for DOP and UOC call options, especially as
the underlying approaches the barrier (see [4] for examples). A careful implementation and description of such a

strategy is outside the scope of the present work. Our focus is on introducing a new static hedging method, and
illustrating its potential for application.
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N 6 8 10 12 25 50 100

mean -0.11 0.043 -0.003 -0.033 -0.031 -0.027 -0.026
MAD 0.14 0.070 0.037 0.043 0.034 0.028 0.027
std 0.30 0.162 0.165 0.178 0.151 0.134 0.140
min -4.26 -2.936 -3.285 -3.636 -3.546 -3.630 -3.775
max 0.85 0.768 0.764 0.760 0.743 0.413 0.364

Table 4. Hedge errors (P&L) of semi-static DOP hedge for BSM model, relative to discretely monitored
value, 3.086, with breach percentage = 58.45. Parameters: S0 = 65, K = 70, B = 60, σ = 0.18, r =
0.06, d = 0.02, M = 252/2.

N 6 8 10 12 25 50 100

mean -0.01 -0.015 -0.037 -0.014 -0.018 -0.014 -0.016
MAD 0.03 0.020 0.040 0.016 0.020 0.015 0.016
std 0.15 0.095 0.122 0.093 0.103 0.092 0.096
min -2.48 -1.927 -2.163 -2.420 -2.649 -2.321 -2.295
max 0.52 0.525 0.249 0.547 0.506 0.551 0.529

Table 5. Hedge errors (P&L) of semi-static DOP hedge for Heston’s model, relative to discretely
monitored value, 8.9836, with breach percentage = 52.56. Parameters: S0 = 65, K = 70, B = 50, ν0 =
0.1800, σv = 2.4400, κ = 0.3800, ρ = -0.5800, θ = 0.1800, r = 0.06, d = 0.02, M = 252/2

In the final set of experiments, we relax the BSM model assumption, and consider a stochastic
volatility driven market with imperfect information. In particular, consider a Heston market
with underlying and variance dynamics described by (31). The initial variance is ν0 = 0.18,
correlation ρ = −0.58, and drift µ = 0.02. While the market volatility is allowed to change, we
assume that traders still price the underlying portfolio using Black-Scholes but at the prevailing
observed market volatility.24 Since a single volatility must be used to establish the original
hedge, we take this to be the long term average volatility,

√
θ = 0.4243. We consider the original

contract parameters K = 70 and B = 50, with the remaining model parameters (obtained from
a calibration to AUDJPY call options on September 16, 2008, [16, 35]) summarized in Table 5.
Since the prevailing volatility at the time of liquidation differs from the volatility used establish
the hedge, a new source of error is introduced in this case. Even so, the results are similar to
what we have observed in a pure BSM market. In this case, even if the monitoring frequency
becomes arbitrarily large, hedging errors will persist at large values of N .

6.5. Global Hedges and Tail Risk. In practice, no hedging method is capable of perfectly
capturing the global behavior of arbitrary payoffs with a market-limited set of traded instru-
ments. The tail behavior of an approximation is constrained by market availability. For model
based pricing, there is no constraint on the truncation interval [L,R]. Hence an initial [L0, R0]
may be chosen, and expanded until value approximations converge within a given tolerance.
Given closed-form expressions for coefficients, additional coefficients can be added incremen-
tally until convergence its attained.

In the context of hedging, let [L,R] = [L0, R0] contain the set of strikes which trade at time
t0. Once a local hedge is established over [L,R] (using the ABS2 method), which is restricted
by market availability, a global hedge can be formed by extending the payoff linearly beyond the
boundaries of L and R with vanilla instruments. If g(ST ) denotes the approximation of a payoff
f(ST ) on [L,R]c, given a model for ST , the expected error with boundary extension satisfies∣∣∣E [f(ST )−

(
PM+

a
f(ST )1[L,R](ST ) + g(ST )1[L,R]c(ST )

)]∣∣∣
≤
∣∣∣E [(f(ST )− PM+

a
f(ST )

)
1[L,R](ST )

]∣∣∣+
∣∣E [(f(ST )− g(ST ))1[L,R]c(ST )

]∣∣
≤ ζ‖(f − PM+

a
f)1[L,R]‖2 + Eg([L,R]c)

24Hence, while they can observe the level of volatility, the true process governing the volatility is unknown to
the market.
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for some ζ > 0 (recall the discussion following Corollary 4.1), where Eg([L,R]c) is the expected
error of the tail approximation. Hence, while the local hedge restricted to [L,R] can be thought
of as roughly model independent (governed by the norm error of projection), truncation leads
to model-dependent tail risk captured by Eg([L,R]c). The tail approximation approach of lin-
ear boundary extension is illustrated in the applications below for variance swaps and capped
power straddles. Implementation details for this simple extension approach are provided in the
supplemental appendix.

Remark 7. In addition to tail extension, semi-static hedging can be used for portfolios of Eu-
ropean options, reducing the tail risk associated with the initial truncation to [L0, R0]. Ad-
justments can be made at an arbitrary set of dates {tm}Mm=1 ⊂ (0, T ), where the local hedge
is adjusted to the interval [Lm, Rm], depending on the realized value of S(tm). Moreover, the
interior coefficients on [Lm−1, Rm−1] ∩ [Lm, Rm] remain unaltered (those corresponding to the
intersection but not on the boundaries Lm, Rm), since the physical payoff does not change.
At each tm the portfolio may be adjusted by unwinding or augmenting by out-of-the-money
positions. Assuming [Lm, Rm] is sufficiently wide, adjustments will be required infrequently.

7. Conclusions

In this work we propose a new theoretical framework for pricing contingent claims and study-
ing their static replication strategies utilizing basic financial instruments whose payoffs form
frames. This generates standardized markets such as those for plain vanilla options, and frames
provide the flexibility to study spaces of claims spanned by simpler securities. We provide a sys-
tematic scheme for pricing/hedging exotic derivatives including path-dependent options through
a new means of static replication that can be implemented in markets with a reasonable spec-
trum of strikes on European options spanning practical trading ranges. Numerical studies on
the pricing of various exotic options demonstrate that this method is accurate in comparison
to existing methods proposed in the literature. Namely, our approach outperforms alternative
methods based on interpolation as well as the integral representations of Carr and Madan [12],
providing more accurate hedges and faster converging value approximations which reduce the
required number of basis elements to achieve a desired accuracy. Future research includes exten-
sions to higher dimensional payoffs, as well as the design of frames to capture particular model
features with sparse representations.

Appendix A. Pricing Experiment

This section illustrates the application of frame projection for model-based pricing of exotic
European options. We consider several exponential Lévy models for the underlying of the form
ST = S0e

XT . Here ST is a non-dividend paying asset (q = 0), and XT is a Lévy process with
known characteristic function µ̂T (ξ) = exp(TψRN (ξ)), where ψRN is the risk-neutral (Lévy)
symbol (see [3] for a development of exponential Lévy-based modeling in finance). We assume
that the symbol is chosen (e.g. martingale adjustment) so that arbitrage-free prices are obtained
after discounting. In this case, efficient pricing methods such that of [4] (which is an efficient
realization of the inverse Fourier transform), the Hilbert transform method [24] or the PROJ
method [30,33] can be used to price the butterfly basis instruments simultaneously.25

As an example, we consider the capped powered call

f(ST ) = (ST −K)2
1[K,C](ST ) + (C −K)2

1(C,∞)(ST ),

with resolutions set as in the Henry Natural Gas example of section 6.3. Once hedges are
formed (independently of the pricing method), we price each of the underlying vanillas, and
determine the hedge payoff’s price using the same set of prices across each method in order to
isolate the difference induced by the hedge itself. For all pricing experiments, reference prices are
obtained by pricing the basis elements (ie the corresponding vanilla contracts) using interpolation

25Utilizing the theory of frame projection, the methodology developed in [30] obtains orthogonal projections

of risk-neutral return densities for processes with known characteristic functions, enabling the efficient pricing of
any finitely valued claim. Extensions to exotic option pricing are considered in [17,18,31,32,34].
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Model ∆ 1.00 0.50 0.20 0.10 0.05

BSM Interp 7.717e-02 1.851e-02 2.779e-03 7.074e-04 1.768e-04
ABS2 4.153e-03 1.526e-04 5.698e-06 3.356e-07 2.112e-08

MJD Interp 7.019e-02 1.694e-02 2.559e-03 6.500e-04 1.624e-04
ABS2 5.158e-03 1.906e-04 5.829e-06 3.564e-07 2.281e-08

CGMY Interp 6.464e-02 1.573e-02 2.414e-03 6.106e-04 1.526e-04
ABS2 3.627e-03 1.198e-04 3.557e-06 2.379e-07 3.663e-08

Table 6. Capped powered call: f(ST ) = (ST − K)21[K,C](ST ) + (C − K)21(C,∞)(ST ). Price er-
rors at spacing ∆, S0 = 3.07, K = 3.15, C = 15, T = 1, r = 0.02, q = 0. Ref. values:
[0.5468885, 1.0902305, 2.4033236]. BSM model: σ = 0.3; MJD model: σ = 0.3, µJ = 0.15, σJ = 0.2, λJ =
0.7; CGMY Model: C = 2,M = 5, G = 6, Y = 0.5

coefficients on a fine mesh. The underlying vanilla prices are verified to the reported accuracy
using each of the methods [22,24,30] (for BSM, analytical vanilla option prices are used).

Valuation errors are reported in Table 6, and ABS2 performs substantially better at all
resolutions, with rapid value convergence. For all resolutions and for each method tested, the
marginal cost after basis prices are obtained is less than 0.2 milliseconds26. Moreover, for all
resolutions hedge construction for ABS2 is within .06 milliseconds of interpolation. Hence, as
the cost of pricing the basis is by far the dominant expense (see [23, 30] for pricing of multiple
strikes in Lévy and Heston models), ABS is able to reduce the total computational cost by
reducing the number of basis elements that are needed. For example, in the BSM test, to reach
an accuracy of 10−4, interpolation requires more than 10 times as many basis elements as ABS2.

Remark 8. In contrast to the case of static hedging, in which the basis resolution is limited by
available strikes, for option pricing in a theoretical model, we are free to choose the resolution as
fine as required, as well as the truncation interval. It is therefore advantageous to obtain error
bounds as a function of these free parameters. We leave a detailed investigation of these issues
for future research.

A.1. BSM and MJD. The Black-Scholes-Merton (BSM) model is described by its volatility,
σ, and is represented by the Lévy symbol ψL(ξ) = −σ2ξ2/2, prior to martingale adjustment.
For this model we consider the test case

(37) Test 1 (BSM) : σ = 0.3

By adding a Poisson jump process with normally distributed jump sizes, we arrive at

ψL(ξ) = −σ2ξ2/2 + λJ
(
exp

(
iµJξ − σ2

Jξ
2/2
)
− 1
)
,

where σ is the diffusion volatility, µJ , σJ are the jump size mean and volatility, and λJ the rate
of jump arrivals. For this model, we consider the test case

(38) Test 2 (MJD) : σ = 0.3, µJ = 0.15, σJ = 0.2, λJ = 0.7

A.2. KoBoL. The CGMY subclass of the general KoBoL model [2, 3] forms a four parameter
family of exponential Lévy models [9]: C ≥ 0 accounts for the activity level of jumps, G,M ≥ 0
determine the skewness, and Y < 2 dictates the fine structure, where Y < 0 specifies a finite
activity process, 0 ≤ Y ≤ 1 a process with finite variation but infinite activity, and 1 ≤ Y < 2
a process of infinite activity and variation. The risk-neutral Lévy symbol is given by

ψRN (ξ) = iξ(r − ψL(−i)) + CΓ(−Y )
(
(M − iξ)Y −MY + (G+ iξ)Y −GY

)
,

where
ψL(−i) = CΓ(−Y )

(
(M − 1)Y −MY + (G+ 1)Y −GY

)
,

and Γ = Γ(y) is the Gamma function. Our third test is the CGMY model with parameters

(39) Test 3 (CGMY) : C = 2, M = 5, G = 6, Y = 0.5,

26For all experiments conducted, the code is written in MATLAB 8.1, and the computer has an Intel(R)
Core(TM) i5-3470T CPU, 2.90GHz with 3MB cache size.
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which generates a density with much heavier tails than the BSM or MJD, as depicted in Figure
4. In terms of the original KoBoL parameterization, we can express the Lévy symbol ψL(ξ) as

(40) cΓ(−ν)[(λ+ + iξ)ν − λν+ + (−λ− − iξ)ν − (−λ−)ν ],

where C = c, M = λ+, G = −λ−, and Y = ν.

Algorithm 1 ABS2 coefficients

K̄ := (R− L)/a; λ := a−1/2/6; K̃ := 4a(R− L) + 14
c0 := 2; c1 := 5/12; c2 := −1/2; c3 := 1/12
{dk}7k=0 = {c3, c2, c1, c0, c1, c2, c3}
zk := f(L− 7/4a+ k/4a), k = 0, ..., K̃

for k = 0, ..., K̃/2− 1 do
θk ← λ · [z2k + z2k+1 + z2k+2]

end for
for j = 0, ..., K̃/2− 1 do

Bk =
∑7
k=0 θk+2(j−1) · dk

end for
return {B}K̄k=0

Appendix B. Algorithms

To ease implementation, this section summarizes the ABS2 algorithm and the Carr-Madan
approach. The Dual method, which is more involved, is omitted. We find that the ABS2 method
provides the same level of accuracy at a fraction of the cost. Moreover, it behaves better in the
presence of payoff discontinuities and is easier to implement. We assume a hedge support of
[L,R] and a resolution of a > 0. Since the market dictates the size of a, the only user-supplied
parameters (for hedging) are L and R, which depend on the application. Assuming that L > 1/a,
we take K̄ := (R−L)/a to be one less than the number of basis elements. The ABS2 algorithm

summarized in Algorithm 1 takes a payoff function f and returns a set of coefficients {Bk}K̄k=0.
In this case, B0 corresponds to the basis element centered at L, B1 corresponds to L+ 1/a, and
Bk corresponds to L+ k/a.

Algorithm 2 Carr-Madan coefficients

K̄ := (R− L)/a
for k = 0, ..., K̄ do

B̃k = .5 · [f ′(L+ (k + 1)/a)− f ′(L+ (k − 1)/a)]
end for
return {B̃k}K̄k=0

A basic implementation of the Carr Madan method [12] is provided in Algorithm 2 where
we assume the first and second order derivatives of the (smooth) payoff are available, otherwise
a finite difference approximation may be substituted. For this method, we supply L,R the
resolution (a > 0) and F0, which is the T -forward price of the underlying. Algorithm 2 returns
the positions in each option with strikes L,L+1/a, ..., R−1/a,R, where strikes less than F0 are
taken in put options, and strikes greater than F0 are taken in call options (the corresponding

positions are denoted by B̃k, to distinguish them from positions in butterfly basis elements).
In addition, we hold f(F0) units in a bond, and f ′(F0) forward contracts. A derivation of the
approximation given in Algorithm 2 can be found in [45].

Appendix C. Auxiliary Results

One way to obtain an expression for Φ is via Fourier series (FS) expansion:



30 J. LARS KIRKBY AND SHIJIE DENG

Theorem C.1. [15] Let φ ∈ L2(R). Then Φ ∈ L1(0, 2π), and the Fourier coefficients of Φ
with respect to the orthonormal basis { 1√

2π
e−ikx}k∈Z are given by

ck =
√

2π

∫ ∞
−∞

φ(x)φ(x− k)dx, k ∈ Z.

Moreover, when φ is a compactly supported real-valued function, the FS expansion has only
finitely many terms:

Φ(γ) =
c0√
2π

+
2√
2π

N∑
k=1

ck cos(kγ),

for some N ≤ d|supp(φ)|e.

The following proposition concerns the alteration of projection coefficients and its effect on
convergence. The proof is omitted.

Proposition C.1. Let (φ, φ̃) be a Riesz generator-dual pair in H. Fix an initial spacing 1/a and
define {αj}j≥0 by αj = 2ja. Choose any finite set of points {xm} of the form xm = km/αjm ,
where km ∈ Z and jm ≤ J∗ ∈ Z+. For each m, choose a bounded sequence {vmj }j≥jm of
modifications. Then ∀ε > 0, ∃J ≥ J∗ ∈ Z+, such that ∀j′ ≥ J ∈ Z+

‖P̃J′f − PJ′f‖2 < ε, ∀f ∈ Z,

where PJ′ is the orthogonal projection of H onto J ′ := span{Dαj′Tkφ}k∈Z, and P̃J′ is obtained

by replacing for each m and ∀j′ ≥ jm the coefficients of D2j′aT2j′−jmkm
φ (those of the basis

elements centered over xm at each resolution above jm) by vmj′ /(αj′)
1/2.

Appendix D. Proofs

Proof of Proposition 3.1. While this result is standard in the literature, the proof of (ii) high-
lights the essence of a multiresolution analysis. Accordingly, fix any ε > 0, and any f ∈ H.
By condition (ii) of the definition of FMRA, there exists j ∈ Z such that for some h ∈ Uj ,
‖f − h‖2 < ε/2. By condition (i) of this proposition and the fact that h ∈ Uj , Pj′h(x) = h(x)
for all j′ ≥ j. Hence

‖f − Pj′f‖2 = ‖f − h+ Pj′h− Pj′f‖2
≤ ‖f − h‖2 + ‖Pj′(f − h)‖2 ≤ 2‖f − h‖2 < ε.

The multiresolution structure ensures that approximations can only improve with mesh refine-
ment. �

Proof of Theorem 3.1. We have for f ∈ H

erT |Vf | ≤
∫ ∞
−∞
|f(ey)|qT (y)dy =

∫ ∞
0

|f(x)|qT (ln(x))

x
dx ≤ ‖f‖2

[∫ ∞
0

q2
T (ln(x))

x2
dx

]1/2

,

so by a change of variables

erT |Vf | ≤ ‖f‖2
[∫ ∞
−∞

q2
T (z)

ez
dz

]1/2

≤ ‖f‖2‖qT ‖1/2∞
[∫ ∞
−∞

qT (z)e−zdz

]1/2

.

Thus, |Vf | ≤ C‖f‖2, where C := e−rT (‖qT ‖∞q̂T (i))
1/2

, and q̂T (i) = e− ln(S0)µ̂T (i). Linearity
is clear. �

Proof of Theorem 3.2. To verify the first claim, note that by Proposition 3.1, ‖Pjf‖2 ≤ ‖f‖2,
so f ∈ H implies |V ◦ Pjf | ≤ ‖V‖2‖Pjf‖2 ≤ ‖V‖2‖f‖2, so Vj : H → C. In fact, by the
Uniform Boundedness Principle, supj‖Vj‖2 < ∞, so Vj is a uniformly bounded class in H∗.
Since continuous linear functionals preserve convergent series,

Vjf = V
(

lim
K→∞

∑
|k|≤K

〈f, T2−jkθj〉φj,k
)

= lim
K→∞

∑
|k|≤K

〈f, T2−jkθj〉V ◦ φj,k,
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by Theorem 3.1. To prove the second claim, V bounded implies that by the Riesz Representation
theorem, ∃h ∈ H for which Vf = 〈f, h〉,∀f ∈ H. Hence,

|Vjf − Vf | = |V ◦ (Pj − I)f | = |〈(Pj − I)f, h〉|
= |〈f, (Pj − I)h〉| ≤ ‖f‖2‖(Pj − I)h‖2,

since Pj is self-adjoint. Taking the supremum over f ∈ H, ‖f‖2 = 1, uniform convergence is
obtained as ‖(Pj − I)h‖2 → 0. �

Proof of Corollary 3.3. The first two claims are immediate from previous results. To prove (iii),
fix any f ∈ H+. Then

‖Pjf − Pj+f‖2 ≤ ‖(Pjf − Pj+f)1x≥0‖2 + ‖(Pjf − Pj+f)1x<0‖2
= ‖(Pjf − Pj+f)1x≥0‖2 + ‖Pjf1x<0‖2
= ‖(〈f, φ̃j,0〉 − f(0)2−j/2) · φj,0(x) · 1x≥0‖2 + ‖(Pjf − f)1x<0‖2
≤ ‖(〈f, φ̃j,0〉 − f(0)2−j/2) · φj,0(x)‖2 + ‖Pjf − f‖2,

which converges to zero by proposition C.1 and (ii) of this proposition. Hence

‖Pj+f − f‖2 ≤ ‖Pj+f − Pjf‖2 + ‖Pjf − f‖2 → 0, as j →∞.
Similarly,

|V ◦ Pj+f − Vf | = |V(Pj+ − I)f | ≤ ‖V‖2‖(Pj+ − I)f‖2.

But ‖(Pj+ − I)f‖2 → 0, and the claim follows. �

Proof of Theorem 3.4. To prove (i), note that DaTkφ̃ is a frame sequence with the same bounds

0 < A ≤ B as for {Tkφ}. Indeed, 〈DaTmφ,DaTkφ̃〉 = 〈φ, Tk−mφ̃〉, and span{DaTmφ}m is
of course dense in Ma, so the bounds remain valid. From the biorthogonality of {Tkφ} and

{Tkφ̃}, δm,k = 〈Tmφ, Tkφ̃〉 = 〈DaTmφ,DaTkφ̃〉, and the result follows since there is at most
one sequence in Ma biorthogonal to {DaTkφ}. For (ii), we have by frame representation and
Parseval’s identity

PMa
f =

∑
k

〈f, φ̃a,k〉φa,k =
1

2π

∑
k

〈f̂ ,F [DaTkφ̃]〉φa,k.

With the modulation operator Eb : H → H defined by (Ebf)(x) = eibxf(x),

〈f̂ ,F [DaTkφ̃]〉 = 〈f̂ , D 1
a
Ek
̂̃
φ〉 = 〈Daf̂ , Ek

̂̃
φ〉 = a1/2

∫ ∞
−∞

f̂(aξ)eikξ
̂̃
φ(ξ)dξ

= a1/2

∫ ∞
−∞

e−ikξ f̂(aξ)
̂̃
φ(−ξ)dξ.

The reality of f and φ̃ then implies

〈f, φ̃a,k〉 = <〈f, φ̃a,k〉 = a1/2<
∫ ∞
−∞

e−ikξ f̂(aξ)
̂̃
φ(−ξ)dξ.

But for z ∈ C, <z = <z̄, so upon splitting the integral

〈f, φ̃a,k〉 = a1/2<
∫ 0

−∞
e−ikξ f̂(aξ)

̂̃
φ(−ξ)dξ + a1/2<

∫ ∞
0

e−ikξ f̂(aξ)
̂̃
φ(−ξ)dξ

= 2a1/2

∫ ∞
0

<
[
e−ikξ f̂(aξ)

̂̃
φ(−ξ)dξ

]
.

�

Proof of Corollary 4.1. A simple calculation yields ϕ̂(ξ) = 4 sin2(ξ/2)/ξ2. By Theorem C.1 in
the appendix, using the fact that ϕ is compactly supported we derive Φ(ξ) = 1

3 (1+2 cos2(ξ/2)),
from which ̂̃ϕ(ξ) = ϕ̂(ξ)Φ(ξ)−1 =

12 sin2(ξ/2)

ξ2(1 + 2 cos2(ξ/2))
=

12 sin2(ξ/2)

ξ2(2 + cos(ξ))
.
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Finally, noting that ̂̃ϕ(ξ) = ̂̃ϕ(−ξ), the result follows from Theorem 3.4. �

Proof of Corollary 4.2. Since φ is real-valued and symmetric, the same is true of φ̂. Further

Φ(ξ) =
∑
k

|φ̂(ξ + 2πk)|2 =
∑
k

|φ̂(−ξ − 2πk)|2 =
∑
k

|φ̂(−ξ + 2πk)|2 = Φ(−ξ),

so
̂̃
φ and hence φ̃ is real-valued and symmetric. The fact that φ̃ is the unique biorthogonal dual

implies that φ̃ ∈ span{Tkφ}, from which the representation φ̃ =
∑
k〈φ̃, Tkφ̃〉Tkφ is valid. Hence,

〈φ̃, Tkφ̃〉 =
1

2π

∫ ∞
−∞

̂̃
φ(ξ)

̂̃
φ(ξ)eiξkdξ =

1

2π

∫ ∞
−∞

̂̃
φ(ξ)

̂̃
φ(−ξ)e−iξkdξ.

Moreover, φ̃ real-valued implies 〈φ̃, Tkφ̃〉 = <〈φ̃, Tkφ̃〉 ∀k. By the symmetry and reality of
̂̃
φ,

<[
̂̃
φ(ξ)

̂̃
φ(−ξ)e−iξk] = (

̂̃
φ(ξ))2<(e−iξk). Thus

〈φ̃, Tkφ̃〉 =
1

2π

∫ ∞
−∞

φ̂2(ξ)

Φ2(ξ)
<(e−iξk)dξ =

1

π

∫ ∞
0

φ̂2(ξ)

Φ2(ξ)
cos(ξk)dξ,

since the integrand is even. �

Proof of Proposition 4.1. From biorthogonality, ϕ̃ necessarily satisfies
∫
R = ϕ̃(x)ϕ(x−k)dx = 0

for |k| ≥ 1, or equivalently

0 =

∫
R

(∑
m∈Z

αmϕ(x−m)

)
ϕ(x− k)dx

= αk−1

∫ k

k−1

Tk−1ϕ · Tkϕ+ αk

∫ k+1

k−1

Tkϕ · Tkϕ+ αk+1

∫ k+1

k

Tk+1ϕ · Tkϕ

=
1

6
(αk−1 + 4αk + αk+1),

so αk+1 = −4αk − αk−1. If we posit the ansatz αk = α0ν
|k| for |k| ≥ 1, the difference equation

becomes α0ν
2+4α0ν+α0 = 0, which has a stationary (non-divergent) solution ν =

√
3−2. When

k = 0, we can use the fact that α−1 = α1 and the biorthogonality relation
∫
R = ϕ̃(x)ϕ(x)dx = 1

to obtain the equation α1 = 3 − 2α0. Combined with the ansatz α1 = α0ν, we find that
α0 = 3/

√
3. Uniqueness of the biorthogonal dual gives the result, after verifying that ϕ̃ ∈ L2 by

a geometric series, with ϕ̃ defined by equation (10). �

Proof of Proposition 4.2. We prove the case of f ∈ C̄, the other being entirely similar. With

εa,k := |βa,k − β̂a,k| = |
∫

[L̄,R̄]c
f · ϕ̃a,k|,

‖P̄Maf − P̂Maf[L̄,R̄]‖22 ≤
∫ ( kR∑

kL

εa,kϕa,k(x)

)2

dx

≤
∫ ( kR∑

kL

ε2a,k

)1/2( kR∑
kL

ϕa,k(x)2

)1/2
2

dx

=

kR∑
kL

ε2a,k ·
kR∑
kL

∫
ϕa,k(x)2dx ≤ ε∗a ·

2

3
a2(R− L+ 1)2,
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where ε∗a := maxkL≤k≤kR{ε2a,k}. By Corollary 4.1, ϕ̃a,k = α0

∑
m∈Z ν

|m|ϕa,k+m, from which we

determine a bound on ε∗a. With Āk := {m ∈ Z : m+ k ≤ kL̄ or m+ k ≥ kR̄}

εa,k ≤ α0

∑
m∈Āk

|ν||m|
∫
|f(x)ϕa,k+m(x)|dx

≤
√

2
∑
m∈Āk

|ν||m|‖f‖I
a
k+m

2

≤
√

2‖f‖I
a
k

2

∑
m∈Āk

|Cν||m| ≤ κ · τ([L̄, R̄]), ∀kL ≤ k ≤ kR,

where κ :=
√

2‖f‖[L−1/a,R+1/a]
2 is independent of [L̄, R̄], and decreases in a, and τ([L̄, R̄]) :=∑

m∈Āk |Cν|
|m| is finite since |Cν| < 1. Hence, we can choose [L̄, R̄] = [kL̄/a, kR̄/a] such that

this tail series is arbitrarily small. Finiteness of the coefficients, hence of the representation,
follows similarly by splitting the expression for βa,k into a finite component and a convergent
tail series. �

Proof of Corollary 4.3. From Proposition 4.1 with α0 := 3/
√

3,∫
R

ϕ̃(x)xpdx = α0

∑
m∈Z

ν|m|
∫
R

ϕ(x−m)xpdx = α0

∑
m∈Z

ν|m|θ1,m,

where θ1,m is derived from equation (16). Thus, with cp := α0/(p+ 1)(p+ 2),

Mp = cp
∑
m∈Z

ν|m|
[
(m− 1)p+2 − 2mp+2 + (m+ 1)p+2

]
= cp

(
1 + (−1)p+2

)(
1 +

∞∑
m=1

νm
[
(m− 1)p+2 − 2mp+2 + (m+ 1)p+2

])
= cp

(
1 + (−1)p+2

)
·
(
1 + νGp+2 − 2Gp+2 + ν−1(Gp+2 − ν)

)
,

where Gq :=
∑∞
m=0 ν

mmq. The result follows upon noting that (1− ν)Gq is the qth moment of
a geometric random variable with success probability 1− ν, which is found by differentiating its
moment generating function. To determine the coefficients,∫

R

ϕ̃a,k(x)xpdx = a1/2

∫
ϕ̃(a(x− k/a))xp

= a−(p+ 1
2 )

∫
ϕ̃(x)(x+ k)pdx = a−(p+ 1

2 )

p∑
n=0

(
p

n

)
kp−n

∫
ϕ̃(x)xndx,

by a change of variables and binomial expansion. The result follows after eliminating odd
moments. �

Proof of Proposition 5.1. We derive the L2 error, with the L1 error following similarly. Note
first that

|〈f, ϕa,k〉| ≤ ‖f‖[L,R]
∞

∫
[ k−1
a , k+1

a ]

ϕa,k(s)ds = a−1/2‖f‖[L,R]
∞ .

Moreover, from equation (10) we have by a geometric series

∑
|m|>γ

|αm|2 = 2
∑
m>γ

(
3√
3

)2

ν2m =
6

1− ν2
ν2(γ+1) = τ(γ)2.
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Hence,

‖fγa − PMa
f‖22 =

∫ ∣∣∣ kR∑
kL

( ∑
|m|≤γ

αm〈f, ϕa,k+m〉
)
ϕa,k(s)− βa,kϕa,k(s)

∣∣∣2ds
≤
∫  kR∑

kL

∣∣∣ ∑
|m|≤γ

αm〈f, ϕa,k+m〉 − βa,k
∣∣∣|ϕa,k(s)|

2

ds

≤
∫  kR∑

kL

|ϕa,k(s)|
∑
|m|>γ

|αm||〈f, ϕa,k+m〉|

2

ds

≤
∫  kR∑

kL

|ϕa,k(s)|

 ∑
|m|>γ

|αm|2
1/2 ∑

|m|>γ

|〈f, ϕa,k+m〉|2
1/2


2

ds

≤
(
τ(γ)‖f‖[L,R]

∞

)2

(R− L+ 1)

∫ ( kR∑
kL

|ϕa,k(s)|

)2

ds.

Expanding the square,∫ ( kR∑
kL

|ϕa,k(s)|

)2

≤
kR∑
kL

∫
ϕ2
a,k(s)ds+

∑
k 6=j

kL≤k,j≤kR

∫
ϕa,k(s)ϕa,j(s)ds

≤ 4

3
a(R− L+ 1).

�

Proof of Lemma 5.1. SinceM := span{Ψk}k∈K is a closed subspace of H, there exists a unique
decomposition H = M

⊕
M⊥, which we denote by f = PMf + PM⊥f . Then for any f ∈ H

and k given, 〈f,Ψk〉 = 〈PMf,Ψk〉. Thus if B denotes the upper frame bound on M,∑
k∈K

|〈f,Ψk〉|2 =
∑
k∈K

|〈PMf,Ψk〉|2 ≤ B‖PMf‖22 ≤ B‖f‖22,

since PMf ∈M. �

Proof of Proposition 5.3. To simplify notation, let P̆ := P̆Ma
. Idempotence of P̆ at all scales

is demonstrated in equation (29). As for continuity, the compact support of φ̆ implies that∑
k |〈φ̆a,j , φ̆a,k〉| ≤ B from some B > 0 and for all j ∈ Z. Hence by Proposition 5.2

‖{〈f, φ̆a,k〉}‖2l2(Z) =
∑
k

|〈f, φ̆a,k〉|2 ≤ B‖f‖22 <∞ ∀f ∈ H,

so {〈f, φ̆a,k〉} ∈ l2(Z), and the mapping T1 : f → {〈f, φ̆a,k〉} is a well-defined, bounded linear
map of H into l2(Z). The fact that {φa,k} is a Riesz sequence, and hence a Bessel sequence on all
of H by Lemma 5.1, implies that

∑
k ckφa,k converges unconditionally ∀{ck} ∈ l2(Z). Moreover,

T2 : {ck} →
∑
k ckφa,k is a well-defined bounded linear mapping of l2(Z) into H. Hence the

composition P̆ = T2 ◦T1 is a bounded linear map from H intoMa. In fact, idempotence implies
that P̆ is onto Ma.

Denoting the unique canonical dual generator by φ̃, the orthogonal projection of H ontoMa

is given by PMa
f =

∑
k〈f, φ̃a,k〉φa,k. If f ∈M, f = PMa

f so by biorthogonality

〈f, φ̆a,m〉 = 〈PMa
f, φ̆a,m〉 =

〈∑
k

〈f, φ̃a,k〉φa,k, φ̆a,m
〉

= 〈f, φ̃a,m〉,

so that P̆ f = PMaf = f ∀f ∈Ma. Thus we have for any f, g ∈ H

〈f, P̆ g〉 = 〈PMa
f, P̆ g〉+ 〈PM⊥a f, P̆ g〉 = 〈PMa

f, P̆ g〉 = 〈PMa
f, P̆ (PMa

g + PM⊥a g)〉.
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Therefore 〈f, P̆ g〉 = 〈PMa
f, PMa

g + P̆PMa
⊥g〉.

Although PM⊥a g ∈M
⊥
a ⊂ Range(P̆ )⊥ ⇒ 〈P̆PM⊥a g, PM⊥a g〉 = 0, it is not true in general that

P̆PM⊥a g = 0. But 〈PMaf, P̆PM⊥a g〉 = 〈f, P̆PM⊥a g〉, so in order for 〈f, P̆ g〉 = 〈PMaf, P̆PMag〉,
it is necessary and sufficient that P̆PM⊥a (H) = {0}. In this case, 〈f, ğ〉 = 〈PMaf, PMag〉, and

likewise for the equality 〈PMa
f, PMa

g〉 = 〈P̆ f, g〉, which is equivalent to self-adjointness of P̆ .

Since idempotence holds, this is equivalent to P̆ = PMa
.

Finally, P̆ (M⊥) = {0} is in turn equivalent to φ̆ ∈ M. Indeed, if φ̆ ∈ M, biorthogonality

implies that {φ̆1,k} is the unique dual which satisfies f = P̆ f+(I− P̆ )f = PMf+PM⊥f . Hence

P̆ (M⊥) = PM(M⊥a ) = {0}. Conversely, if P̆ (M⊥) = {0}, then
∑
k〈f, φ̆1,k〉φ1,k = 0 ∀f ∈ M⊥.

But {φ1,k} is a Riesz sequence, so ω-independence implies 〈f, φ̆1,k〉 = 0 ∀k ∈ Z. Hence, {φ̆1,k} ∈
(M⊥)⊥ =M since M is closed, so φ̆ ∈M. �

Proof of Proposition 5.4. By symmetry, the biorthogonality condition 〈ϕ̆[γ](x), ϕ(x − k)〉 = 0
for |k| ≥ 1 is equivalent to

0 =

∫
ϕ̆[γ](x)ϕ(x− k)dx =

2γ−1∑
m=0

c[γ]
m λ|m−k|, 1 ≤ k ≤ γ,

where λ|m−k| := 〈ϕ(x −m), ϕ(2x − k)〉 can be shown to satisfy equation (25), and λj = 0 for
j ≥ 3. This gives the second through fourth equations above, which represent γ equations in
all. The first equation is derived similarly from 〈ϕ̆[γ](x), ϕ(x)〉 = 1, bringing the total to γ + 1
equations. Since 2γ − 1 coefficients are needed, there are γ − 1 remaining degrees of freedom,
which are consumed by the moment matching conditions:

M2k =

∫
ϕ̆[γ](x)x2kdx =

1√
2

(
c
[γ]
0

∫
ϕ(2x)x2kdx+ 2

2γ−1∑
m=1

c[γ]
m

∫
ϕ(2x−m)x2kdx

)
,

where the integrals are evaluated using equation (16). Linear independence is then easily verified
from the corresponding matrix.

To verify the final claim, Let f(x) :=
∑kR
kL
ϕ1,k(x) ∈ M1, where kL := −γ, kR := γ. From

Proposition 5.3, any ABS approximation is a projector onto M1, so in particular with a = 1
the coefficient corresponding to k = 0 in the ABSγ approximation satisfies

1 =

∫
fϕ̆[γ] =

∫ γ

−γ

kR∑
kL

ϕ1,kϕ
[γ] =

∫ γ

−γ

∑
k∈Z

ϕ1,kϕ̆
[γ] =

∫ γ

−γ
ϕ̆[γ] =

∫
R
ϕ̆[γ],

where we have used 1 =
∑
k∈Z ϕ1,k. Thus

∫
R ϕ̆

[γ] = M0 is satisfied for any γ. For γ ≥ 1 fixed,
by Corollary 4.3 with p ≤ 2γ − 1,∫

xpϕ̃a,k(x)dx = a−(p+ 1
2 )

∫
(x+ k)pϕ̃(x)dx = a−(p+ 1

2 )

b p2 c∑
n=0

(
p

2n

)
kp−2nM2n

= a−(p+ 1
2 )

b p2 c∑
n=0

(
p

2n

)
kp−2n

∫
x2nϕ̆[γ](x)dx =

∫
xpϕ̆

[γ]
a,k(x)dx,

which follows upon equating the moments, and then reversing the change of variables and
binomial expansion. �

Proof of Proposition 5.5. By compactness of φ̆, we’ve seen that
∑
k |〈Tkφ̆, Tmφ̆〉| ≤ B for some

B > 0 and ∀m ∈ Z. But∑
k

|〈Tkφ̆, Tmφ̆〉| =
∑
k

|〈DjTkφ̆,DjTmφ̆〉| ≤ B,

from which

‖{〈f, φ̆j,k〉}‖2l2(Z) =
∑
k

|〈f, φ̆j,k〉|2 ≤ B‖f‖22, ∀f ∈ H,
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where B is constant ∀j ∈ Z. Hence the continuous linear map A1,j : f → {〈f, φ̆j,k〉} is point-
wise bounded over f ∈ H, uniformly in j ∈ Z. By the uniform boundedness principle (UBP),
supj∈Z‖A1,j‖ ≤ A1, for some A1 > 0. Likewise, the fact that φ generates an RMRA implies the

map A2,j : {ck} →
∑
k ckφj,k for {ck} ∈ l2(Z) is point-wise bounded for each f ∈ H, uniformly

over j ∈ Z. Again, the UBP implies supj∈Z‖A2,j‖ ≤ A2, for some A2 > 0. By composition,

P̆j = A2,j ◦ A1,j , and ‖P̆j‖ ≤ ‖A2,j‖‖A1,j‖ ≤ A2A1, so supj∈Z‖P̆j‖ ≤ A2A1. Thus, P̆j is a
bounded, linear projection operator on H.

Now let Pj denote the orthogonal projection Pjf =
∑
k〈f, φ̃j,k〉φj,k, and fix any ε > 0. The

fact that φ is an RMRA generator implies the existence of j ∈ Z such that, for some h ∈ Uj ,
‖f − h‖2 < ε(1 +A1A2)/2 for any f ∈ H. Moreover, the RMRA structure ensures that h ∈ Uj′
for all j′ ≥ j, hence ‖f − Pj′f‖2 ≤ ε/(1 +A1A2), ∀j′ ≥ j by the proof of proposition 3.1. Thus

‖P̆j′f − f‖2 ≤ ‖P̆j′f − P̆j′Pj′f‖2 + ‖P̆j′Pj′f − f‖2
= ‖P̆j′(I − Pj′)f‖2 + ‖(Pj′ − I)f‖2
≤ (‖P̆j′‖+ 1)‖(I − Pj′)f‖2 ≤ (A2A1 + 1)‖(I − Pj′)f‖2 < ε,

for all j′ ≥ j. Thus limj→∞‖P̆jf − f‖2 = 0, and limj→∞ |V ◦ P̆jf − Vf | = 0 follows from

previous arguments. From the proof of Theorem 3.1, for some ζ > 0 we have |V ◦ P̆jf − Vf | ≤
ζ‖P̆j′f − f‖2 ≤ ζ(A2A1 + 1)‖(f − Pj′f‖2. �
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Appendix A. Supplemental Material: Transform-Based Method

Direct application of Corollary 4.1 leads to a procedure which applies when the payoff form
of f(ST ) is known27 on an interval [L̄, R̄] containing [L,R], the desired hedge support. While
this method is not utilized in the present work, numerical experiments have been conducted
to verify its accuracy, and it extends easily to alternative bases. We assume that for some kL,
kR ∈ N, the endpoints satisfy L = kL/a, R = kR/a. Two applications of the fast Fourier
transform (FFT) are required, where the desired coefficients ck, k = kL, ..., kR, are recovered
from those corresponding to [L̄, R̄]. Hence, with P ∈ N+, we define kR̄ := kL̄ + 2P − 1 so that
[kL̄/a, kR̄/a] = [L̄, L̄+ (2P − 1)/a)] = [L̄, R̄] straddles [L,R].

By utilizing the function defined over [L̄, R̄], coefficients corresponding to the projection over
[L,R] are obtained with superior accuracy. To begin, we define

f̄(y) = f(L̄+ y)− f(L̄)− y∆f , where ∆f :=
f(R̄)− f(L̄)

R̄− L̄
,

and determine the coefficients c̄k of the projection

f̄(ST ) ≈
NF−1∑
k=0

c̄kϕa,k(ST ),

where NF := 2P . We then define

h(ξ) :=
a2(1− cos(ξ/a))

ξ2(2 + cos(ξ/a))
,

which we sample over the grid ξj := (j − 1)∆ξ, j = 1, ..., NF , where ∆ξ = 2πa
NF

.We determine

the coefficients of f̄ over [0, R̄− L̄], corresponding to the points yk = (k − 1)/a, k = 1, ..., NF

c̄k−1 ≈ 12 · <
∫ 2πa

0

e−iykξh(ξ) ˆ̄f(ξ)dξ

≈ 12 · <
NF∑
j=1

e−i
(k−1)
a ξjh(ξj)

ˆ̄f(ξj)∆ξ

=
24π

NF
· <

NF∑
j=1

e
−i(k−1)(j−1) 2π

NF h(ξj)
ˆ̄f(ξj) =

24π

NF
· <
[
Dk−1{h(ξj)

ˆ̄f(ξj)}NFj=1

]
,(41)

where D denotes the discrete Fourier transform, and D−1 will denote its inverse. To determine

{ ˆ̄f(ξj)}NFj=1, using the fact that yNF = (2P − 1)/a = R̄− L̄ we compute

ˆ̄f(ξj) ≈
∫ R̄−L̄

0

eiξjy f̄(y)dy ≈ 1

a

NF∑
n=1

e
a(j−1) 2π

NF
yn f̄(yn)

=
1

a

NF∑
n=1

e
(j−1)(n−1) 2π

NF f̄(yn) =
NF
a
D−1
j {f̄(yn)}NFn=1.(42)

Combining equations (41) and (42), we arrive at

(43) c̄k−1 ≈
24π

a
· <
[
Dk−1

{
h(ξj) ·D−1

j {f̄(yn)}
}]
.

From the set {c̄k}2
P−1
k=0 , we extract the desired coefficients

ckL+j = c̄k0+j , j = 0, ..., kR − kL,

where k0 := kL−kL̄. This procedure, which is applicable to general Reisz sequences of translates,
is easy to implement and produces highly accurate approximations for smooth functions, but is
not as robust to payoff discontinuities as the ABS and Dual methods.

27Alternatively, if the Fourier transform of f is known, it can be used directly in place of ˆ̄f(ξ) below.
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Appendix B. Supplemental Material: Additional Applications

B.1. Hedging with Multiple Decision Periods. The examples considered so far require
portfolio rebalancings at up to two distinct times, once at initialization to establish the static
hedge, and possibly an additional rebalancing at a single stopping time prior to expiry. As
demonstrated in [7], the semi-static approach can be extended to multiple rebalancing (decision)
periods. For example, consider a rolldown call option which is described by a set of barriers,
B1 > B2 > . . . > Bn, each less than S0. If St > B1 for 0 ≤ t ≤ T , the option pays (ST −K0)+ at
maturity. However, if B1 is breached priory to expiry, the prevailing strike rolls down from K0

to K1 < K0, and likewise with each successive Bi which is hit, the strike rolls down from Ki−1 to
Ki. This contract, denoted RDC, can be represented as the following portfolio of down-and-out
call options

RDC = DOC(K0, B1) +

n−1∑
i=1

{DOC(Ki, Bi+1)−DOC(Ki, Bi)}

where DOC(Kj , Bm) represents a strike Kj option with knock out barrier Bm. Hence, at
initialization we establish a hedge portfolio of European payoffs

(44) f̃(ST ;K0, B1) +

n−1∑
i=1

{
f̃(ST ;Ki, Bi+1)− f̃(ST ;Ki, Bi)

}
,

where the individual adjusted payoffs are defined by

(45) f̃(ST ;Kj , Bm) =

(ST −Kj)
+ if ST > Bm

−
(
ST
Bm

)p (
B2
m

ST
−Kj

)+

if ST ≤ Bm
,

and the butterfly methodology can be applied to each individually to obtain an aggregated posi-
tion in butterfly (or vanilla) payoffs. For eachBi that is breached, the positions in f̃(ST ;Kj , Bj+1)

and f̃(ST ;Kj , Bj) are liquidated at the market price, while the remaining positions are left un-
touched. Hence, this strategy faces at most n rebalancings, including initialization. A similar
strategy holds for ratchet options [7].

B.2. Quasi-Analytical Hedges. Many practical nonlinear payoffs can be expressed in the
form Ψ(ST ) = h ◦ f(ST ), or f ◦ h(ST ) where f(ST ) is a given payoff. For example, a simple
generalization of the powered call is the payoff (max{λST −K, 0})2. If analytical hedges of f
are known, then in some cases an analytical or quasi-analytical hedge of Ψ is given by specifying
the original payoff f along with the type of transformation h any transformation parameters,
adding to the efficiency of pricing/hedging routines. The idea is to find formulas for transformed
payoffs in terms of known or analytically given coefficients.

B.2.1. Basic Transforms. We start with the coefficients βa,k(Ψ) of some more obvious trans-
forms when the coefficients βa,k are known for f :

Shift : βa,k(T k̄
a
f) = Tk̄βa,k = βa,k−k̄

Scale : βa,k(λf + c) = λβa,k + ca−1/2

Dilation : βa,k(f(γ·)) = γ−1/2β a
γ ,k

To avoid a resolution change, we fixed the shift k̄/a to remain at the market spacing, although
this is not required in general. Similarly, in the case of dilation, we are finding the coefficients
at the market spacing a > 0 in terms of those at a potentially unavailable resolution.

B.2.2. Caps, Floors and Composition. To avoid catastrophically large payouts or simply to
reduce the option premium, caps are often introduced so that Ψ(ST ) = f(ST )1f(ST )≤C +
C1f(ST )>C = min{f(ST ), C}. Floors serve a similar purpose of allowing for upside poten-
tial while restricting the maximum attainable loss for the option holder. These payoffs satisfy
ΨC(ST ) = max{C, f(ST )} = C1f(ST )≤C + f(ST )1f(ST )>C , the classic example being the stan-

dard vanilla option Ψ(ST ) = (α(ST −K))+ = max{0, α(ST −K)}, where α = ±1 and C = 0.
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For a capped payoff when f(ST ) is monotone and xc satisfies f(xc) = C, given the coefficients
of βa,k of f , we set kc := baxcc, λc := axc − kc = (xc − kc/a)/(1/a), and define

(46) βCa,k =


βa,k k < kc

λcβa,kc + (1− λc)Ca−1/2 k = kc

Ca−1/2 k > kc
.

Hence, the coefficient at the ”pasting” point kc is weighted according to its proximity to the
two separate payoffs, f(ST )1f(ST )≤C and C1f(ST )>C , and on either side of kc the coefficients
are set according to which payoff is active.

Of course caps and floors can be combined to form collar type payoffs,

ΨD(ST ) = max{F,min{f(ST ), C}} = F1f(ST )≤F + f(ST )1f(ST )∈(F,C) + C1f(ST )≥C ,

where f is typically monotone on (F,C). With f(xF ) = F , kF := daxF e, and λF = axF − kF ,
an analogous formula for floored and capped payoffs is found:

(47) βDa,k =



Fa−1/2 k < kF

(1− λF )βa,kF + λFFa
−1/2 k = kF

βa,k kF < k < kc

λcβa,kc + (1− λc)Ca−1/2 k = kc

Ca−1/2 k > kc

.

Formulas for compositions of transforms can be specified as well. For example, the capped
powered call is the composition of (min{C, ·})2 with min{0, ST −K}, where the payoff satisfies
([ST −K]+)2

1[ST≤K+C1/2] +C1[ST>K+C1/2] with K = k̄/a (k̄ = kF ) and kc := ba(K +C1/2)c.
Hence, the coefficients for k̄ < k < kc are given by equation (19), βDa,k = 0 for k < k̄ and

βCa,kc = λa−5/2[(kc − k̄)2 − 1
6 ] + (1− λ)a−1/2C.

Similarly, at a high enough resolution28, the payoff Ψ(ST ) = max{f1(ST ), f2(ST )} is ac-
curately represented by the pairwise maximum of the coefficients βmax

a,k = max{β1
a,k, β

2
a,k}. A

call on a scaled maximum of the payoffs, (γΨ(ST ))+ can be found by applying equation (47)
with the dilation coefficients 1

γβ
max
a
γ ,k

in place of βa,k. When K = γk̄/a, the coefficients of

(γΨ(ST ) −K)+ are found by the flooring formula with F = 0 and the set of beta coefficients
1
γT γk̄

a

βmax
a
γ ,k

= 1
γβ

max
a
γ ,k−k̄

. Of course an arbitrary K can be specified, but the coefficients will need

to be calculated at a different resolution.

B.2.3. Piecewise Continuous Payoffs. As an example, consider the case of a profit hedging
commodity supplier whose future expenses vary nonlinearly with an unknown supply quan-
tity, according to a set of tranche-dependent fixed and marginal costs (e.g. according to in-
frastructure utilization, outsourcing, stock-out, etc.). By capturing the correlation between
price and quantity, the joint exposure can be mitigated by a payoff on realized price over
[L,R] = [kL/a, kR/a]. Fixing tranches Im = [ τma ,

τm+1

a ], m = 1, ...,M−1, where T = {τ1, ..., τM}
are the left tranche boundaries, set to the nearest market strike, τ1 := kL, τR := kR, and
δm := f(τ+

m) − f(τ−m), m = 1, ...,M are the corresponding payoff jumps, we assume that to
each Im there corresponds a payoff function fm := (f − δ̄m)1{Im} with known coefficients βma,k,

where δ̄m :=
∑m
j=1 δj = f(τ+

m). The coefficients of f =
∑M
m=1(δ̄m1{Im}+ fm) are given by

βpca,k =


a−1/2δ̄m + βma,k k ∈ T c ∪ {kL, kR}

a−1/2[δ̄m−1 + δm/2] +
βm−1
a,k + βma,k

2
k = τm

.

Of course, the projection methods can still be applied directly to f , without specifying any
known discontinuities. The ABS methods in particular are robust to payoff jumps, since their

28This qualitative statement is left to be specified by the user, with the condition that at low resolutions, ie

large spacing between strikes, a method such as ABS2 is used. For pricing resolutions, this approximation will
generally be sufficient.
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narrow support mitigates the effect of Gibbs phenomenon. When the jumps are known, and the
payoffs corresponding to each tranch are analytically hedged, this approach is preferred.

B.3. Global Hedges by Linear Extrapolation. For the most part, we have used butterfly
representations to obtain local hedges, which introduces tail risk for payoffs with unbounded
support, such as uncapped power options. This section proposes a potential method to reduce
tail risk for payoffs with unbounded support. Suppose that f is differentiable at L and R. To
establish a global hedge for a general payoff f from its local hedge on [L,R], constructed from

butterfly payoffs {ϕa,k}K̄k=0, we can choose boundary instruments to match the payoff’s slope at
L and R. Hence, we define the right boundary payoffs

ϕ1
a,K̄(ST ) = a3/2

[
ST −

(
L+

K̄ − 1

a

)]+
= a3/2 · ψcall

R− 1
a

(ST )

ϕ2
a,K̄(ST ) = a3/2

[
ST −

(
L+

K̄

a

)]+
= a3/2 · ψcallR (ST ) ,

which are used to approximate the right tail behavior of an unbounded payoff. Similarly define
the left boundary payoffs

ϕ1
a,0(ST ) = a3/2

[(
L+

1

a

)
− ST

]+
= a3/2 · ψput

L+
1
a

(ST )

ϕ2
a,0(ST ) = a3/2

[
L− ST

]+
= a3/2 · ψputL (ST )

Starting with a local approximation on [L,R], where the coefficients β1
a,K̄

of ϕ1
a,K̄

and β1
a,0 of

ϕ1
a,0 are calculated in the usual manner, we augment the representation by linear extension at

each boundary. To match boundary slopes, the coefficients β2
a,K̄

of ϕ2
a,K̄

and β2
a,0 of ϕ2

a,0 must

satisfy

a1/2(β2
a,K̄ + β1

a,K̄) = f ′(R)

and

a1/2(β2
a,0 + β1

a,0) = f ′(L),

which yields

β2
a,K̄ = a−1/2f ′(R)− β1

a,K̄ and β2
a,0 = −a−1/2f ′(L)− β1

a,0.

We then have the global static hedge

f(ST ) ≈ a3/2βa,0 · ψput
L+

1
a

(ST )−
(
af ′(L) + a3/2βa,0

)
ψputL (ST )

+

K̄−1∑
k=1

βa,kϕa,k(ST ) + a3/2βa,K̄ · ψcall
R− 1

a

(ST )

+
(
af ′(R)− a3/2βa,K̄

)
· ψcallR (ST ) ,

which gives an extended butterfly basis. This approach can be used to reduce, but not eliminate
tail risk for unbounded payoffs, and [L,R] can be selected in a model-dependent manner. For
example, [L,R] can be chosen so that the probability (or model-based value ascribed to the
payoff) corresponding to ST ∈ [0, L) ∪ (R,∞) is below a fixed tolerance. At the same time,
portfolio rebalancing can be performed in response to extreme moves in the underlying to further
limit exposure.

B.4. Pricing on the Level of Randomness. While exponential (e.g. exponential Lévy)
models are very popular in equity and other markets with strictly positive asset prices or indices,
in some cases pricing on the level of randomness is more appropriate, and we can utilize duality
for a Riesz basis to price a payoff when the risk-neutral characteristic function for the underlying
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Scale(∆) 2 1 0.5 0.25 0.1 0.01

Interp 2.000e-02 5.000e-03 1.250e-03 3.125e-04 5.000e-05 5.000e-07
Dual12 7.698e-03 1.924e-03 4.811e-04 1.203e-04 1.922e-05 2.254e-07
ABS2 7.698e-03 1.925e-03 4.811e-04 1.203e-04 1.925e-05 1.925e-07
CM 1.000e-02 7.500e-02 3.750e-02 1.875e-02 7.500e-03 7.500e-04

Table 7. RAHE of f(ST ) = S2
T on [L,R] = [0, 10].

is known, as opposed to that of the log underlying. The pricing functional is then given by

V(f) = e−rT
∫
R f(s)pT (s)ds, ∀f ∈ H. By duality,

∑
k〈f, φ̃j,k〉φj,k =

∑
k〈f, φj,k〉φ̃j,k. Hence

Vj(f) = V

(∑
k

〈f, φj,k〉φ̃j,k

)
= e−rT

∑
k

〈f, φj,k〉〈pT , φ̃j,k〉

=
e−rT

2π

∑
k

〈f, φj,k〉〈p̂T ,
̂̃
φj,k〉,

whereby the coefficients 〈p̂T ,
̂̃
φj,k〉 represent the projection coefficients of pT , and the payoff is

now integrated directly against φj,k.

B.5. Higher Dimensional Extensions. In order to price multi-dimensional payoffs, for in-

stance the basket call option with terminal payout f(S1,T , ..., Sd,T ) =
(∑d

n=1 γnSn,T −K
)+

,

basis theory suggests the use of the tensor product basis
∏d
n=1 ϕan,kn(sn), where each dimen-

sion is alloted a separate resolution. Fixing a1 = a2 = a in the two dimensional case, and
ϕak1,k2

(S1,T , S2,T ) := ϕa,k1(S1,T )ϕa,k2(S2,T ), the projection is formed by

PM2
a
f(S1,T , S2,T ) =

∑
k1

ϕa,k1
(S1,T )

∑
k2

ϕa,k2
(S2,T )〈f(s1, s2), ϕ̃ak1,k2

(s1, s2)〉

=
∑
k1,k2

βak1,k2
· ϕak1,k2

(S1,T , S2,T ),

where ϕ̃ak1,k2
(s1, s2) = ϕ̃a,k1

(s1)ϕ̃a,k2
(s2). In higher dimensions, the ABS schemes become even

more essential to reduce the computational cost of βak1,k2
, where we simply replace the product

dual by the product of one dimensional ABS elements. Given a joint pricing kernel (or joint
characteristic function), prices for the basis elements are used to price f :

V ◦ f(S1,0, S2,0) ≈
∑
k1,k2

βak1,k2
· V ◦ ϕak1,k2

(S1,0, S2,0).

Moreover, once payoff coefficients have been obtained for the payoff form, products on various
asset pairs are priced by computing the corresponding basis prices, using the same set of βak1,k2

.
Alternatively, higher dimensions offer the possibility of designing frames to efficiently price
specific payoff forms. For example, a difference frame space could be tailored to the pricing of
rainbow options such as (max{S1,T , S2,T } −K)

+
.

Appendix C. Supplemental Material: Additional Experiments

This section considers several additional payoffs to further illustrate the performance of the
proposed method. While the ABS2 method is preferred in general, we present results for the
ABS1 method as well for comparison. We first demonstrate the effectiveness of the dual and
ABS2 methods with two practical examples. Table 7 presents hedge errors for the payoff f(ST ) =
S2
T on [0, 10]. For the dual method, we take γ = 12, which corresponds to a dual approximation

on the interval [−13, 13]. As expected from Proposition 5.4, the dual and ABS errors are nearly
identical since the payoff is a second order polynomial. Moreover, the dual and ABS methods are
more than twice as accurate as interpolation at each resolution, and many times more accurate
than CM.

Table 8 illustrates this example with the payoff f(ST ) = ln(ST ) over [1, 11]. Note that we have
avoided the singularity in our computation, since none of the methods are able to reasonably
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Scale(∆) 2 1 0.5 0.25 0.1 0.01

Interp 1.689e-02 4.487e-03 1.147e-03 2.885e-04 4.624e-05 4.626e-07
Dual12 8.778e-03 2.064e-03 4.853e-04 1.165e-04 1.816e-05 2.707e-07
ABS2 8.918e-03 2.088e-03 4.908e-04 1.174e-04 1.820e-05 1.784e-07
CM 2.866e-02 2.625e-02 1.174e-02 5.572e-03 2.163e-03 2.124e-04

Table 8. RAHE of f(ST ) = ln(ST ) on [L,R] = [1, 11].

Test 1: BSM Test 2: MJD

∆ Interp ABS1 ABS2 Interp ABS1 ABS2

2.00 2.385e-03 1.473e-03 6.359e-04 1.150e-03 6.036e-04 7.736e-05
1.00 6.414e-04 3.436e-04 4.518e-05 3.079e-04 1.592e-04 1.054e-05
0.50 1.631e-04 8.306e-05 2.839e-06 7.757e-05 3.928e-05 9.686e-07
0.25 4.095e-05 2.057e-05 1.775e-07 1.947e-05 9.822e-06 1.745e-07
0.10 6.560e-06 3.282e-06 4.595e-09 3.161e-06 1.614e-06 6.761e-08

Test 3: KoBoL (CGMY) RAHE

∆ Interp ABS1 ABS2 Interp ABS1 ABS2

2.00 2.595e-04 3.866e-04 5.066e-04 1.092e-02 8.416e-03 7.854e-03
1.00 1.046e-04 6.853e-05 3.072e-05 2.850e-03 1.838e-03 1.375e-03
0.50 2.823e-05 1.434e-05 2.075e-07 7.264e-04 4.383e-04 2.991e-04
0.25 6.915e-06 3.122e-06 6.920e-07 1.827e-04 1.082e-04 7.161e-05
0.10 9.192e-07 2.976e-07 3.249e-07 2.924e-05 1.722e-05 1.129e-05

Table 9. f(ST ) = [sin(ST )/2 + 3 ln(5 + ST )]1[0,40](ST ): Comparison of value approximation
error and RAHE, with strikes in [0, 40] at spacing ∆, S0 = 8, T = 1, reference values:
[7.39914, 7.33607, 7.19402, 9.264774].

hedge a payoff near a singularity without carefully adjusting the resolution. Moreover, to keep
the singular behavior near ST = 0 from affecting the coefficients, it is advantageous to use an
auxiliary linear approximation of the form

ln(ST )1[ST ≥ τ ] + [ln(τ) + (ST − τ)/τ ]1[ST < τ ],

which replaces the left singular tail by a linear Taylor approximation. While any value of
τ ∈ (s, L] is reasonable, where s denotes the singularity (s = 0 for ln(ST )), as τ approaches
s the approximation deteriorates (especially for the dual method, since the ABS has narrower
support). We find that a value of τ = 1/2 works well in this case29.

To demonstrate the potential for pricing highly nonlinear contracts, we construct the payoff

f(ST ) = [sin(ST )/2 + 3 ln(5 + ST )]1[0,40](ST ), S0 = 8, T = 1.

Table 9 demonstrates again the superiority of ABS methods in terms of both pricing convergence
and relative hedge errors. At a resolution ∆ = .5, the ABS2 method is about two orders more
accurate than interpolation, for each model tested, and its relative hedge error is less than half.

We also consider the amortizing option of [25]:

f(ST ) =
(ST −K)+

ST
, S0 = 14,K = 15, T = .5,

the results of which are shown in Table 10. In the BSM case, ABS2 significantly outperforms
interpolation, where at the resolution ∆ = 0.1, an interpolation accuracy of e− 05 compares to
an ABS2 accuracy of e−10, demonstrating that while ABS2 generally outperforms interpolation,
the discrepancy can be extreme. For the CGMY model, with ∆ = 2, the accuracy of ABS2 has
already reached e− 06, and accuracy which is not reached by interpolation even for ∆ = 0.1.

29For the ABS2, an approximation can be made arbitrarily close to s by choosing ∆ so that s ≤ L− 2∆, and

using the auxiliary payoff with τ(∆) := L−∆. This can be applied to functions other than ln(ST ), and also at
interior and right boundary singularities by similarly defining the auxiliary payoff.
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Test 1: BSM Test 2: MJD

∆ Interp ABS1 ABS2 Interp ABS1 ABS2

2.00 6.433e-02 4.659e-02 2.730e-03 4.525e-02 3.239e-02 8.193e-04
1.00 3.810e-03 1.888e-03 1.136e-05 2.816e-03 1.396e-03 3.742e-06
0.50 9.558e-04 4.768e-04 6.488e-07 7.068e-04 3.537e-04 1.903e-06
0.25 2.391e-04 1.195e-04 3.774e-08 1.772e-04 8.904e-05 9.711e-07
0.10 3.827e-05 1.914e-05 8.865e-10 2.875e-05 1.465e-05 5.523e-07

Test 3: KoBoL (CGMY) RAHE

∆ Interp ABS1 ABS2 Interp ABS1 ABS2

2.00 2.378e-02 1.711e-02 7.499e-06 2.838e-03 2.483e-03 2.481e-03
1.00 1.928e-03 9.754e-04 3.198e-05 2.983e-04 1.843e-04 1.286e-04
0.50 4.864e-04 2.490e-04 1.218e-05 7.460e-05 4.504e-05 3.048e-05
0.25 1.249e-04 6.556e-05 6.285e-06 1.865e-05 1.112e-05 7.403e-06
0.10 2.354e-05 1.406e-05 4.571e-06 2.984e-06 1.766e-06 1.163e-06

Table 10. Amortizing option f(ST ) = (ST−15)+

ST
1[0,50](ST ). Comparison of value approximation

error and RAHE, with strikes in [10, 50] at spacing ∆, S0 = 14, T = .5, reference values:
[0.04827, 0.05624, 0.07330, 0.42351].
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