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Abstract

This paper studies the optimal risk-averse timing to sell a risky asset. The investor’s risk
preference is described by the exponential, power, or log utility. Two stochastic models are con-
sidered for the asset price – the geometric Brownian motion and exponential Ornstein-Uhlenbeck
models – to account for, respectively, the trending and mean-reverting price dynamics. In all
cases, we derive the optimal thresholds and certainty equivalents to sell the asset, and compare
them across models and utilities, with emphasis on their dependence on asset price, risk aver-
sion, and quantity. We find that the timing option may render the investor’s value function
and certainty equivalent non-concave in price. Numerical results are provided to illustrate the
investor’s strategies and the premium associated with optimally timing to sell.

Keywords: asset sale, risk aversion, certainty equivalent, optimal stopping, variational inequality

JEL Classification: C41, G11, G12

Mathematics Subject Classification (2010): 60G40, 62L15, 91G10, 91G80

∗IEOR Dept, Columbia University, New York, NY 10027; email: tl2497@columbia.edu. Corresponding author.
†IEOR Dept, Columbia University, New York, NY 10027; email: zw2192@columbia.edu.

1

http://arxiv.org/abs/1610.08143v1


1 Introduction

We consider a risk-averse investor who seeks to sell an asset by selecting a timing strategy that
maximizes the expected utility resulting from the sale. At any point in time, the investor can either
decide to sell immediately, or wait for a potentially better opportunity in the future. Naturally,
the investor’s decision to sell should depend on the investor’s risk aversion and the price evolution
of the risky asset. To better understand their effects, we model the investor’s risk preference by
the exponential, power, or log utility. In addition, we consider two contrasting models for the
asset price – the geometric Brownian motion (GBM) and exponential Ornstein-Uhlenbeck (XOU)
models – to account for, respectively, the trending and mean-reverting price dynamics. The choice
of multiple utilities and stochastic models allow for a comprehensive comparison analysis of all six
possible settings.

We analyze a number of optimal stopping problems faced by the investor under different models
and utilities. The investor’s value functions and the corresponding optimal timing strategies are
solved analytically. In particular, we identify the scenarios where the optimal strategies are trivial.
These arise in the GBM model with exponential and power utilities, but not with log utility or
under the XOU model with any utility. The non-trivial optimal timing strategies are shown to be of
threshold type. The optimal threshold represents the critical price at which the investor is willing to
sell the asset and forgo future sale opportunities. In most cases, the optimal threshold is determined
from an implicit equation, though under the GBM model with log utility the optimal threshold
is explicit. Moreover, intuitively the investor’s optimal timing strategy should depend, not only
on risk aversion and price dynamics, but also the quantity of assets to be sold simultaneously. In
general, we find that the dependence is neither linear nor explicit. Nevertheless, under the GBM
model with log utility, the optimal price to sell is inversely proportional to quantity so that the
sale will always result in the same total revenue regardless of quantity. In contrast, under the
XOU model with power utility, the optimal threshold is independent of quantity, and thus the total
revenue scales linearly with quantity.

While all utility functions considered herein are concave, the timing option to sell may render
the investor’s value functions and certainty equivalents non-concave in price under different models.
For instance, under the GBM model with log utility the value function can be convex in the con-
tinuation (waiting) region and concave when the value function coincides with the utility function
for sufficiently high asset price. Under the XOU model, we observe that the value functions are in
general neither concave nor convex in price. If the time of asset sale is pre-determined and fixed,
then the value functions are always concave. Therefore, the phenomenon of non-concavity arises
due to the timing option to sell. Mathematically, the reason lies in the fact that the value functions
are constructed using convex functions that are the general solutions to the PDE associated with
the underlying GBM or XOU process.

To better understand the investor’s perceived value of the risky asset with the timing option to
sell, we analyze the certainty equivalent associated with each utility maximization problem. With
analytic formulas, we illustrate the properties of the certainty equivalents. In all cases, the certainty
equivalent dominates the current asset price, and the difference indicates the premium of the timing
option. The gap typically widens as the underlying price increases before eventually diminishing to
zero for sufficiently high price. As a consequence, the certainty equivalents are in general neither
concave nor convex in price. If the optimal strategy is trivial, the certainty equivalent is simply a
linear function of asset price.

In the literature, Henderson (2007) considers a risk-averse manager with a negative exponential
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utility who seeks to optimally time the investment in a project while trading in a correlated asset
as a partial hedge. Under the GBM model, the manager’s optimal timing strategy is to either
invest according to a finite threshold or postpone indefinitely. In comparison, the investor in our
exponential utility case under the GBM model may either sell immediately or at a finite threshold,
but will never find it optimal to wait indefinitely. Evans et al. (2008) also study a mixed stochastic
control/optimal stopping problem with the objective of determining the optimal time to sell a non-
traded asset where the investor has a power utility. In our paper, we show that the optimal timing
with power utility is either to sell immediately or wait indefinitely under the GBM model, but the
threshold-type strategy is optimal under the XOU model.

Our study focuses on the GBM and XOU models for the asset price. A related paper by
Leung et al. (2015) analyzes optimal stopping and switching problems under the XOU model. Their
results are applicable to our case with power utility under the same model. Other mean-reverting
price models, such as the OU model (see e.g. Ekström et al. (2011)) and Cox-Ingersoll-Ross (CIR)
model (see e.g. Ewald and Wang (2010); Leung et al. (2014)), have been used to analyze various
optimal timing problems. The recent work by Ekström and Vaicenavicius (2016) investigates the
optimal timing to sell an asset when its price process follows a GBM-like process with a random
drift. All these studies do not incorporate risk aversion.

Alternative risk criteria can also be used to study the asset sale timing problem. Inspired
by prospect theory, Henderson (2012) considers an S-shape (piecewise power) utility function of
gain/loss relative to the initial price. Under the GBM model, the investor may find it optimal to
sell at a loss. Pedersen and Peskir (2016) solves for the optimal selling strategy under the mean-
variance risk criterion. Instead of maximizing expected utility, one can also incorporate alternative
risk penalties to the optimal timing problems. Leung and Shirai (2015) study this problem under
both GBM and XOU models with shortfall and quadratic penalties. Other than asset sale, the
problem of optimal time to sell and/or buy derivatives by a risk-averse investor has been studied
by Henderson and Hobson (2011); Leung and Ludkovski (2012), among others.

A natural extension for future research is to continue to investigate the asset sale timing under
other underlying dynamics, such as models with jumps, stochastic volatility, and/or regime switch-
ing. Another major direction is to incorporate model ambiguity to the associated optimal stopping
problems; see Riedel (2009); Cheng and Riedel (2013). In addition to the trading of risky assets, it
is also of interest to incorporate utility and partial hedging in the optimal liquidation of derivatives.

We organize the rest of the paper in the following manner. In Section 2, the asset sale problems
are formulated for different utilities and price dynamics. In Section 3, we present the solutions of
the problems and discuss the optimal selling strategies. We analyze the certainty equivalents in
Section 4. All proofs are included in Section 5.

2 Problem Overview

We consider a risk-averse asset holder (investor) with a subjective probability measure P. For
our optimal asset sale problems, we will study two models for the risky asset price, namely, the
geometric Brownian motion (GBM) model and the exponential Ornstein-Uhlenbeck (XOU) model.
First, the GBM price process S satisfies

dSt = µSt dt+ σSt dBt,
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with constant parameters µ ∈ R and σ > 0, where (Bt)t≥0 is a standard Brownian motion under
P. Under the second model, the XOU price process X is defined by

Xt = eZt ,

dZt = κ(θ − Zt) dt+ η dBt, (2.1)

where the log-price Z is an OU process with constant parameters κ, η > 0, θ ∈ R.
The investor’s risk preference is modeled by three utility functions:

(1) Exponential utility

Ue(w) = 1− e−γw, for w ∈ R,

with the risk aversion parameter γ > 0;

(2) Log utility

Ul(w) = log(w), for w > 0;

(3) Power utility

Up(w) =
wp

p
, for w ≥ 0,

where p := 1 − ̺, with the risk aversion parameter ̺ ∈ [0, 1). In particular, when p = 1, the
power utility is linear, corresponding to zero risk aversion.

Denote by F the filtration generated by the Brownian motion B, and T the set of all F-stopping
times. The investor seeks to maximize the expected discounted utility from asset sale by selecting
the optimal stopping time. Denote by ν > 0 the quantity of the risky asset to be sold. For
simplicity, we limit our analysis to simultaneous liquidation of all ν units. The investor will receive
the utility value of Ui(νSτ ) or Ui(νXτ ), i ∈ {e, l, p}, under the GBM and XOU model respectively,
when all units are sold at time τ .

Therefore, the investor solves the optimal stopping problems under two different price dynamics:

(GBM) Vi(s, ν) = sup
τ∈T

Es

{
e−rτUi(νSτ )

}
, (2.2)

(XOU) Ṽi(x, ν) = sup
τ∈T

Ex

{
e−rτUi(νXτ )

}
, (2.3)

for i ∈ {e, l, p}, where r > 0 is the constant subjective discount rate. We have used the shorthand
notations: Es{·} ≡ E{·|S0 = s} and Ex{·} ≡ E{·|X0 = x}. By the standard theory of optimal
stopping (see e.g. Chapter 1 of Peskir and Shiryaev (2006) and Chapter 10 of Øksendal (2003)),
the optimal stopping times are of the form

τ∗i = inf{ t ≥ 0 : Vi(St, ν) = Ui(νSt) }, (2.4)

τ̃∗i = inf{ t ≥ 0 : Ṽi(Xt, ν) = Ui(νXt) }. (2.5)

In this paper, we analytically derive the value functions and show they satisfy their associated
variational inequalities. Under the GBM model, for any fixed ν, the value functions Vi(s) ≡ Vi(s, ν),
for i ∈ {e, l, p}, satisfy the variational inequalities

max
{
(LS − r)Vi(s), Ui(νs)− Vi(s)

}
= 0, ∀s ∈ R+, (2.6)
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for i ∈ {e, l, p}, where LS is the infinitesimal generator of S defined by

LS =
σ2s2

2

d2

ds2
+ µs

d

ds
. (2.7)

Likewise, under the XOU model the value functions Ṽi(x) ≡ Ṽi(x, ν), i ∈ {e, l, p}, solve the varia-
tional inequalities

max{(LZ − r)Ṽi(e
z) , Ui(νe

z)− Ṽi(e
z)} = 0, ∀z ∈ R, (2.8)

for i ∈ {e, l, p}, where

LZ =
η2

2

d2

dz2
+ κ(θ − z)

d

dz
, (2.9)

is the infinitesimal generator of the OU process Z (see (2.1)). For optimal stopping problems driven
by an XOU process, we find it more convenient to work with the log-price Z.

To better understand the value of the risky asset under optimal liquidation, we study the
certainty equivalent associated with each utility maximization problem. The certainty equivalent
is defined as the guaranteed cash amount that generates the same utility as the maximal expected
utility from optimally timing to sell the risky asset. Precisely, we define

(GBM) Ci(s, ν) = U−1
i

(
Vi(s, ν)

)
, (2.10)

(XOU) C̃i(x, ν) = U−1
i

(
Ṽi(x, ν)

)
, (2.11)

for i ∈ {e, l, p}, under the GBM and XOU models respectively. Certainty equivalent gives us a
common (cash) unit to compare the values of timing to sell under different utilities, dynamics, and
quantities.

Moreover, the certainty equivalent can shed light on the investor’s optimal strategy. Indeed,
applying (2.10) and (2.11) to (2.4) and (2.5) respectively, we obtain an alternative expression for
the optimal stopping time under each model:

τ∗i = inf{ t ≥ 0 : Ci(St, ν) = νSt }, (2.12)

τ̃∗i = inf{ t ≥ 0 : C̃i(Xt, ν) = νXt }. (2.13)

In other words, it is optimal for the investor to sell when the certainty equivalent is equals to the
total cash amount of νSt or νXt, under the GBM or XOU model respectively, received from the
sale.

3 Optimal Timing Strategies

In this section, we present the analytical results and discuss the value functions and optimal selling
strategies under the GBM and XOU models. The methods of solution and detailed proofs are
presented in Section 5.

5



3.1 The GBM Model

To prepare for our results for the GBM model, we first consider an increasing general solution to
the ODE:

LSf(s) = rf(s), s ∈ R+, (3.1)

with LS defined in (2.7). This solution is f(s) = sα with

α =

(
1

2
−

µ

σ2

)
+

√(
µ

σ2
−

1

2

)2

+
2r

σ2
. (3.2)

By inspection, we see that 0 < α < 1 when r < µ, and α ≥ 1 when r ≥ µ.

Theorem 3.1 Consider the optimal asset sale problem (2.2) under the GBM model with exponen-
tial utility.

(i) If r ≥ µ, then it is optimal to sell immediately, and the value function is Ve(s, ν) = 1− e−γνs.

(ii) If r < µ, then the value function is given by

Ve(s, ν) =

{
(1− e−γνae)(ae)

−αsα if s ∈ [0, ae),
1− e−γνs if s ∈ [ae,+∞),

where the optimal threshold ae ∈ (0,+∞) is uniquely determined by the equation

α(eγνae − 1)− γνae = 0. (3.3)

The optimal time to sell is
τ∗e = inf{ t ≥ 0 : St ≥ ae }.

Under the GBM model with exponential utility, the optimal selling strategy can be either triv-
ial or non-trivial. When the subjective discount rate r equals or exceeds the drift µ of the GBM
process, it is optimal to sell immediately. This is intuitive as the asset net discounting tends to lose
value. On the other hand, when r < µ, the investor should sell when the unit price exceeds a finite
threshold. At the optimal sale time τ∗e , the investor receives the cash amount νae from the sale of
ν units of S. In other words, ae is the per-unit price received upon sale, but according to (3.3) it
varies depending on the quantity ν and risk aversion parameter γ.

Theorem 3.2 Consider the optimal stopping problem (2.2) under the GBM model with log utility.
The value function is given by

Vl(s, ν) =

{
να

αes
α if s ∈ [0, al),

log(νs) if s ∈ [al,+∞),

where al := ν−1 exp(α−1) is the unique optimal threshold. The optimal time to sell is

τ∗l = inf{t ≥ 0 : St ≥ al}.

With log utility, the optimal strategy is to sell as soon as the unit price of the risky asset, S,
enters the upper interval [al,+∞). Note that the optimal threshold al is inversely proportional to
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quantity, so the total cash amount received upon sale, νal = exp(α−1), remains the same regardless
of quantity. In other words, the log-utility investor is not financially better off by holding more units
of S. Under exponential utility, the optimal selling price is implicitly defined by (3.3) in Theorem
3.1 and must be evaluated numerically. In contrast, the optimal threshold under log utility is fully
explicit.

Turning to the value functions, a natural question is whether they preserve the concavity of the
utilities. Indeed, if the investor sells at a pre-determined fixed time T , then the expected utility
W (s) := Es

{
e−rTU(νST )

}
is concave in s for any concave utility function U . From Theorem 3.1,

we see that Ve(s, ν) is concave in s for all s ∈ R+. On the other hand, Vl(s, ν) is concave in s when
α < 1, but it is neither convex nor concave in s when α ≥ 1. In other words, the timing option
to sell gives rise to the possibility of non-concave value function. In Figure 1, we plot the value
functions associated with the exponential and log utilities when the investor is holding a single
unit of the asset. The value functions dominate the utility functions, and coincide smoothly at the
optimal selling thresholds. In Figure 1(b), the value function Vl(s, 1) under log utility is shown to
have two possible shapes. For µ = 0.01 < 0.02 = r, i.e. α < 1, the value function Vl(s, 1) is convex
when s is lower than al, and concave for s ≥ al. In the other scenario, µ > r, i.e. α > 1, the value
function Vl(s, 1) is concave.
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Figure 1: Value functions smooth-paste the utility function under the GBM model. (a) The
value function Ve(s, 1) dominates the exponential utility Ue(s) (with γ = 0.5 and µ = 0.05) and
coincides for s ≥ ae = 2.5129. (b) The value functions Vl(s, 1) (with µ = 0.05) and Vl(s, 1) (with
µ = 0.01) dominate the log utility Ul(s) and coincide for s ≥ al = 7.3891 and s ≥ al = 2.1832
respectively. Common parameters: σ = 0.2, ν = 1, r = 2%.
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Figure 2: Optimal selling thresholds, ae (with γ = 0.2, 0.5, 1) and al, under the GBM model vs
quantity ν. Parameters: µ = 0.05, σ = 0.2, r = 2%.

Figure 2 illustrates the effect of quantity ν on optimal selling thresholds ae and al under expo-
nential and log utilities respectively. The optimal strategy under power utility is trivial and thus
omitted from the figure. The optimal threshold ae is decreasing in ν for each fixed risk aversion
γ = 0.2, 0.5 and 1. Moreover, for any fixed quantity, a higher γ lowers the optimal selling price.
The quantity ν effectively scales up the risk aversion to the value νγ instead of γ. Increase in either
of these parameters results in higher risk aversion, inducing the investor to sell at a lower price. In
comparison, the log-utility optimal threshold al is explicit and inversely proportional to ν, as seen
in the figure.

We conclude this section with a discussion on the optimal liquidation strategy under power
utility. First, observe that for any p ∈ (0, 1], the power process Sp

t is also a GBM satisfying

dSp
t = µ̃Sp

t dt+ σ̃Sp
t dBt,

with new parameters

µ̃ = pµ+
1

2
p(p− 1)σ2 and σ̃ = pσ.

Then, the process
(
e−rtSp

t

)
t≥0

is a submartingale (resp. supermartingale) if µ̃ > r (resp. µ̃ ≤ r).
As a result, the optimal timing to sell is trivial, as we summarize next.

Theorem 3.3 Consider the optimal asset sale problem (2.2) under the GBM model with power
utility.

(i) If µ̃ ≤ r, then it is optimal to sell immediately, and the value function Vp(s, ν) = Up(νs).

(ii) If µ̃ > r, then it is optimal to wait indefinitely, and the value function Vp(s, ν) = +∞.
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3.2 The XOU Model

In this section, we discuss the optimal asset sale problems under the XOU model. As is well
known (see p.542 of Borodin and Salminen (2002) and Prop. 2.1 of Alili et al. (2005)), the classical
solutions of the ODE

LZf(z) = rf(z), (3.4)

for z ∈ R, are

F (z) ≡ F (z;κ, θ, η, r) :=

∫ ∞

0
υ

r
κ
−1e

√
2κ
η2

(z−θ)υ−υ2

2 dυ, (3.5)

G(z) ≡ G(z;κ, θ, η, r) :=

∫ ∞

0
υ

r
κ
−1e

√
2κ
η2

(θ−z)υ−υ2

2 dυ. (3.6)

Alternatively, the functions F and G can be expressed as

F (z) = e
κ

2η2
(z−θ)2

D−r/κ

(√
2κ

η2
(θ − z)

)
and G(z) = e

κ
2η2

(z−θ)2
D−r/κ

(√
2κ

η2
(z − θ)

)
,

where Dv(·) is the parabolic cylinder function or Weber function (see Erdélyi et al. (1953)). Direct
differentiation yields that F ′(z) > 0, F ′′(z) > 0, G′(z) < 0, and G′′(z) > 0. Hence, both F (z) and
G(z) are strictly positive and convex, and they are, respectively, strictly increasing and decreasing.
In particular, the function F plays a central role in the solution of the optimal asset sale problems
under the XOU model.

Theorem 3.4 Under an XOU model with exponential utility, the optimal asset sale problem admits
the solution

Ṽe(x, ν) =

{
KF (log(x)) if x ∈ [0, ebe ),
1− e−γνx if x ∈ [ebe ,+∞),

(3.7)

with the constant

K =
1− exp

(
−γνebe

)

F (be)
> 0.

The critical log-price level be ∈ (−∞,+∞) satisfies
(
1− exp

(
−γνebe

))
F ′(be) = γνebe exp

(
−γνebe

)
F (be). (3.8)

The optimal time to sell is

τ̃∗e = inf{t ≥ 0 : Xt ≥ ebe}.

According to Theorem 3.4, the investor should sell all ν units as soon as the asset price X
reaches ebe or above. The optimal price level ebe depends on both the investor’s risk aversion and
quantity, but it stays the same as long as the product νγ remains unchanged.

Theorem 3.5 Under an XOU model with log utility, the optimal asset sale problem admits the
solution

Ṽl(x, ν) =

{
DF (log(x)) if x ∈ [0, ebl),
log(νx) if x ∈ [ebl ,+∞),

(3.9)
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with the coefficient

D =
bl + log(ν)

F (bl)
> 0. (3.10)

The finite critical log-price level bl is uniquely determined from the equation

F (bl) = (bl + log(ν))F ′(bl). (3.11)

The optimal time to sell is

τ̃∗l = inf{t ≥ 0 : Xt ≥ ebl}.

In Figure 3(d), we see that the optimal unit selling price ebl is decreasing in ν but when
multiplied by the quantity ν, the total cash amount νebl received from the sale increases.

For the case of power utility, we observe that X̃ := Xp is again an XOU process, satisfying

X̃t = eZ̃t , where dZ̃t = κ(θ̃ − Z̃t) dt+ η̃ dBt, t ≥ 0, (3.12)

with the new parameters η̃ := pη > 0, and θ̃ := pθ ∈ R. In particular, both the original long-run
mean θ and volatility parameter η have been scaled by a factor of p, while the speed of mean
reversion remains unchanged. Therefore, the value function admits the separable form:

Ṽp(x, ν) = sup
τ∈T

Ex

{
e−rτ ν

pXp
τ

p

}
= Up(ν) Ṽ (x̃, 1), (3.13)

where

Ṽ (x̃, 1) := sup
τ∈T

Ex̃

{
e−rτ X̃τ

}
. (3.14)

Hence, without loss of generality, the optimal timing to sell can be determined from the optimal
stopping problem in (3.14), and the corresponding value function Ṽp can be recovered from (3.13).

Theorem 3.6 Under the XOU model with power utility, the solution to the optimal asset sale
problem is given by

Ṽp(x, ν) =

{
MF (p log(x)) if x ∈ [0, ebp),
νp

p x
p if x ∈ [ebp ,+∞),

where

M =
νpepbp

pF (pbp)
> 0.

The critical log-price threshold bp ∈ (−∞,+∞) satisfies the equation

F ′(pbp) = F (pbp), (3.15)

where F (z) ≡ F (z;κ, θ̃, η̃, r). The optimal asset sale timing is

τ̃∗p = inf{t ≥ 0 : Xt ≥ ebp}.

The investor should sell all ν units the first time the asset price reaches the level ebp . According
to (3.15), the optimal price level is independent of quantity ν, as we can see in Figure 3(d).
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Under the XOU model, the value functions Ṽi(x, ν), i ∈ {e, l, p} are not necessarily concave in
x due to the convex nature of F and the timing option to sell. Let’s inspect the value functions in
Figure 3. In each of these three cases, the value function is initially convex before smooth-pasting
on the concave utility.
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Figure 3: Under the XOU model, (a) the value function Ṽe(x, 1) dominates the exponential
utility Ue(x) (with γ = 0.5) and coincides for x ≥ ebe = e1.1188 = 3.0612. (b) The value

function Ṽp(x, 1) dominates the power utility Up(x) (with p = 0.3) and coincides for x ≥ ebp =

e0.3519 = 1.3715. (c) The value function Ṽl(x, 1) dominates the log utility Ul(x) and coincides
for x ≥ ebl = e1.2227 = 3.3963. (d) Optimal selling thresholds vs quantity ν. γ = 0.5, p = 0.3.
Common Parameters: κ = 0.6, θ = 1, η = 0.2, r = 2%.
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In Table 1, we summarize the results from Sections 3.1 and 3.2 and list the optimal thresholds
for all the cases we have discussed. All thresholds, except al, are implicitly determined by the
equations referenced in the table. The asset price model plays a crucial role in the structure of the
optimal strategy. Under the GBM model with exponential utility, immediate liquidation may be
optimal in one scenario regardless of the current asset price. On the contrary, with the same utility
under the XOU model, immediate liquidation is never optimal and the investor should wait till the
asset price rises to level ebe . With power utility, the GBM model implies a trivial optimal strategy,
whereas the XOU model results in a threshold-type strategy. Lastly, even though both GBM and
XOU price processes lead to non-trivial strategies for log utility, the optimal threshold al is explicit
while ebl must be computed numerically.

Exponential utility Log utility Power utility

GBM 0 / ae in (3.3) al :=
e1/α

ν
0 / +∞

XOU ebe in (3.8) ebl in (3.11) ebp in (3.15)

Table 1: Optimal thresholds for asset sale under different models and utilities.

4 Certainty Equivalents

Having derived the value functions analytically, we now state as corollaries the certainty equivalents
Ci(s, ν) and C̃i(x, ν), i ∈ {e, l, p}, defined respectively in (2.10) and (2.11) under the GBM and
XOU models. Furthermore, to quantify the value gained from waiting to sell the asset compared
to immediate liquidation, we define the optimal liquidation premium under each model:

(GBM) L(s, ν) := Ci(s, ν)− νs, (4.1)

(XOU) L(x, ν) := C̃i(x, ν)− νx, (4.2)

for i ∈ {e, l, p}. We will examine the dependence of this premium on the asset price and quantity.

Corollary 4.1 Under the GBM model, the certainty equivalents under different utilities are given
as follows:

(1) Exponential utility:

Ce(s, ν) =

{
− 1

γ log
(
1− 1−e−γνae

aeα
sα
)

if s ∈ [0, ae),

νs if s ∈ [ae,+∞).

(2) Log utility:

Cl(s, ν) =

{
exp

(
ναsα

αe

)
if s ∈ [0, al),

νs if s ∈ [al,+∞).

(3) Power utility:

Cp(s, ν) =

{
νs if µ̃ ≤ r,
+∞ if µ̃ > r.
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With exponential and log utilities, the certainty equivalents dominate νs – the value from im-
mediate sale, and they coincide when the asset price exceeds the corresponding optimal selling
thresholds. With power utility, the investor either sells immediately or waits indefinitely, corre-
sponding to the certainty equivalents of value νs and +∞, respectively.

The impact of ν on Ce is both direct in its certainty equivalent’s expression, but also indirect
in the derivation of ae. As a result, the relationship between Ce and ν is rather intricate. In com-
parison, the explicit formula for the optimal threshold al under log utility facilitates our analysis
on the behavior of the certainty equivalent Cl. Fix any price s, Cl(s, ν) is convex in ν when r ≥ µ.
Consequently, the liquidation premium is maximized at ν = 0. However, when r < µ, then Cl(s, ν)
is concave on the price interval (0, log

(
1−α
sα

)
+ 1) and convex on (log

(
1−α
sα

)
+ 1, exp(α−1)/s). This

implies that there exists an optimal quantity ν∗ ∈ (0, log
(
1−α
sα

)
+1) that maximizes the liquidation

premium. This is useful when the investor can also choose the initial position in S.

Next, we state the certainty equivalents under the XOU model.

Corollary 4.2 Under the XOU model, the certainty equivalents under different utilities are given
as follows:

(1) Exponential utility:

C̃e(x, ν) =




− 1

γ log

[
1−

1−exp(−γνebe)
F (be)

F (log(x))

]
if x ∈ [0, ebe),

νx if x ∈ [ebe ,+∞).

(2) Log utility:

C̃l(x, ν) =

{
exp

[
bl+log(ν)
F (bl)

F (log(x))
]

if x ∈ [0, ebl),

νx if x ∈ [ebl ,+∞).

(3) Power utility:

C̃p(x, ν) =

{[
epbp

F (pbp)
F (p log(x))

]1/p
ν if x ∈ [0, ebp),

νx if x ∈ [ebp ,+∞).
(4.3)

For all three utilities, the certainty equivalents are equal to the immediate sale value, νx, when
the asset price x is in the exercise region, where all units are sold. In addition, we emphasize that
both be and bl are dependent on ν, which can be observed from (3.8) and (3.11). In contrast, the
optimal log-price threshold under power utility bp is independent of ν. Consequently, if we consider

any fixed x in the continuation region (0, ebp), then the certainty equivalent C̃p(x, ν)− νx is linear
and strictly increasing in ν. This is interesting since under exponential and log utilities, increasing
quantity has the effect of making the investor more risk-averse. In other words, as long as quantity
is large enough, the investor will liquidate everything immediately even if the current price appears
unattractive.

Let us now examine the certainty equivalents’ dependence on the asset price. Under the GBM
model, we plot the certainty equivalents, Ce(s, 1) and Cl(s, 1), against prices, respectively, in Figures
4(a) and 4(b), with a single unit of asset held. The optimal selling strategy for power utility is
trivial, and thus, not presented. From Section 3.1, we know that for sufficiently large s, it is optimal
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to sell and thus the certainty equivalents will eventually coincide with s and be linear. Notice that
in both Figures 4(a) and 4(b), the certainty equivalents are concave for small s and subsequently
convex for large s. In general, the certainty equivalents are neither concave nor convex functions of
asset price, especially since the value functions Vi and Ṽi, i ∈ {e, l, p} are not necessarily concave.

In Figure 4(a), we have also shown Ce(s, 1) for different values of risk aversion level γ. As the
investor becomes more risk-averse, it becomes optimal to sell the asset earlier. This is reflected
by the certainty equivalent’s convergence to the linear price line s at a lower price. Moreover, a
less risk-averse certainty equivalent dominates a more risk-averse one at all prices. Similar effects
of risk aversion is also seen in Figure 4(c) for exponential utility and Figure 4(d) for power utility
under the XOU model.
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Figure 4: Certainty equivalent vs price. (a) Ce(s, 1) under the GBM model (µ = 0.05, σ = 0.2).

(b) Cl(s, 1) under the GBM model (µ = 0.05, σ = 0.2). (c) C̃e(x, 1) under the XOU model

(κ = 0.6, θ = 1, η = 0.2). (d) C̃p(x, 1) under the XOU model (κ = 0.6, θ = 1, η = 0.2). Note
that p := 1− ̺, where ̺ is the risk aversion parameter. Common parameter: r = 2%.
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Figure 5: Liquidation premium L(x, ν) under the XOU model plotted against quantity ν and
price x. (a) Exponential utility with γ = 0.5. (b) Power utility with p = 0.3. Common
parameters: κ = 0.6, θ = 1, η = 0.2, r = 2%.

Figures 5(a) and 5(b), respectively, illustrate the liquidation premia for exponential and power
utilities under the XOU model. The liquidation premium for power utility is linear in ν for any fixed
value of x, but the exponential utility liquidation premium is nonlinear. In general, the liquidation
premium vanishes when x is sufficiently high when the asset price is in the exercise region. As we
can see from Figures 5(a) and 5(b) and Figures 4(a)-(d), the optimal liquidation premium tends to
be large and may increase when the asset price is very low. This suggests that there is a high value
of waiting to sell the asset later if the current price is low. As the asset price rises, the premium
shrinks to zero. The investor finds no value in waiting any longer, resulting in an immediate sale.

5 Methods of Solution and Proofs

In this section, we present the detailed proofs for our analytical results in Section 3, from Theorems
3.1 - 3.2 for the GBM model to Theorems 3.4 - 3.6 for the XOU model. Our method of solution
is to first construct candidate solutions using the classical solutions to ODEs (3.1) and (3.4),
corresponding to the GBM and XOU models respectively, and then verify that the candidate
solutions indeed satisfy the associated variational inequalities (2.6) and (2.8).

5.1 GBM Model

Proof of Theorem 3.1 (Exponential Utility). To prove that the value functions in Theorem
3.1 satisfy the variational inequality in (2.6), we consider the two cases, r ≥ µ and r < µ, separately.

When r ≥ µ, it is optimal to sell immediately. To see this, for any fixed ν we verify that
Ve(s, ν) = 1 − e−γνs satisfies (2.6). Since Ve(s, ν) = Ue(νs) for all s ∈ R+, we only need to check
that the inequality

(LS − r)(1− e−γνs) = e−γνs

(
µγνs−

σ2γ2ν2s2

2
− reγνs + r

)
≤ 0 (5.1)
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holds for all s ∈ R+. First, we observe that the sign of the LHS of (5.1) depends solely on

g(s) := µγνs−
σ2γ2ν2s2

2
− reγνs + r . (5.2)

The first and order second derivatives g are, respectively,

g′ = µγν − σ2γ2ν2s− rγνeγνs, and g′′ = −σ2γ2ν2 − rγ2ν2eγνs,

from which we observe that g is strictly concave on R+. Furthermore, g(0) = 0 and the fact
lims→+∞ g(s) = −∞ imply that g has a global maximum. Since g′+(0) = (µ− r)γν > 0 (resp. < 0)
if µ > r (resp. µ < r), the maximum of g is non-positive if r ≥ µ. As a result, g is non-positive for
all s ∈ R+, which yields inequality (5.1), as desired.

For an arbitrary ν > 0, we can view νγ together as the risk aversion parameter for the expo-
nential utility, and equivalently consider the asset sale problem with ν = 1 and risk aversion νγ
without loss of generality. When r < µ, we consider a candidate solution Ve of the form Asα, where
A > 0 is a constant to be determined. Recall that α is less than 1 when r < µ, and hence sα is
an increasing concave function. We solve for the optimal threshold ae and coefficient A from the
value-matching and smooth-pasting conditions

Aaαe = Ue(ae) = 1− e−γνae , (5.3)

Aαaα−1
e = U ′

e(ae) = γνe−γνae .

This leads to the following equation satisfied by the optimal threshold ae:

α(eγνae − 1)− γνae = 0. (5.4)

We now show that there exists a unique and positive root to (5.4). Our approach involves
establishing a relationship between (5.4) and (LS − r)(1 − e−γνs). To this end, first observe that
the exponential utility 1− e−γνs has the following properties:

lim
s→0

1− e−γνs

sβ
= lim

s→+∞

1− e−γνs

sα
= 0, (5.5)

where

β =

(
1

2
−

µ

σ2

)
−

√(
µ

σ2
−

1

2

)2

+
2r

σ2
,

and sβ is a decreasing and convex solution to (3.1). In addition, we have

Es

{∫ ∞

0
e−rt

∣∣(LS − r)(1− e−γνst)
∣∣ dt
}

= Es

{∫ ∞

0
e−rt

∣∣∣∣e
−γνst

(
µγνst −

σ2γ2ν2s2t
2

− reγνst + r

)∣∣∣∣ dt
}

< Es

{∫ ∞

0
e−rt

(
1 +

σ2

2
+ r

)
dt

}
=

1

r
+

σ2

2r
+ 1 < ∞. (5.6)

The limits in (5.5) and condition (5.6) together imply that the function 1 − e−γνs admits the
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following analytic representation:

1− e−γνs = −sβ
∫ s

0
ΨS(υ)(LS − r)(1− e−γνυ) dυ − sα

∫ +∞

s
ΦS(υ)(LS − r)(1− e−γνυ) dυ, (5.7)

where

ΨS(s) =
2sα

σ2s2WS(s)
, ΦS(s) =

2sβ

σ2s2WS(s)
,

and

WS(s) =
2

√(
µ− σ2

2

)2
+ 2σ2r

σ2
s−

2µ

σ2 > 0, ∀s ∈ R+.

We refer the reader to Section 2 of Zervos et al. (2013) and Chapter 2 of Borodin and Salminen
(2002) for details on the representation.

Next, dividing 1− e−γνs by sα and differentiating in s, we have
(
1− e−γνs

sα

)′

=
γνe−γνssα − (1− e−γνs)αsα−1

s2α
. (5.8)

The crucial step is to recognize that finding the root to the derivative in (5.8) is equivalent to
solving (5.4). Furthermore, appealing to (5.7), the LHS of (5.8) becomes

(
1− e−γνs

sα

)′

= −

(
sβ

sα

)′ ∫ s

0
ΨS(υ)(LS − r)

(
1− e−γνυ

)
dυ

−
sβ

sα
ΨS(s)(LS − r)

(
1− e−γνs

)
+ΦS(s)(LS − r)(1− e−γνs)

=
WS(s)

s2α

∫ s

0
ΨS(υ)(LS − r)

(
1− e−γνυ

)
dυ =

WS(s)

s2α
qe(s),

where

qe(s) :=

∫ s

0
ΨS(υ)(LS − r)(1− e−γνυ) dυ.

Since both s2α and WS(s) are strictly positive for s > 0, we conclude that (5.4) is equivalent to
the equation qe(ae) = 0. By differentiating, we obtain q′e(s) = ΨS(s)(LS − r)(1 − e−γνs). Since
ΨS(s) > 0 for all s ∈ R+, the sign of q′e(s) depends solely on (LS − r)(1 − e−γνs), and thus on
g defined in (5.2). The function g is strictly concave on R+. Since g′+(0) = (µ − r)γν > 0, the
maximum of g is strictly positive. This implies that there exists a unique positive ϕ such that
g(ϕ) = 0. Consequently, we have

q′e(s)

{
> 0 if s < ϕ,

< 0 if s > ϕ.
. (5.9)

This together with the fact that qe(0) = 0, lead us to conclude that there exists a unique ae > 0
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such that qe(ae) = 0 if and only if lims→+∞ qe(s) < 0. The latter holds due to the facts:

qe(s) =
s2α

WS(s)

(
1− e−γνs

sα

)′

,
1− e−γνs

sα
> 0, ∀s ∈ [0,+∞), lim

s→+∞

1− e−γνs

sα
= 0.

(5.10)

Therefore, we conclude that there exists a unique finite root ae to equation (5.4). Furthermore, by
the nature of qe we have

ae > ϕ and qe(s) > 0, ∀s < ae. (5.11)

Finally, from (5.3) we deduce that A = (1− e−γνae)a−α
e > 0.

Next, we verify the optimality of the candidate solution using the variational inequality (2.6).
First, observe that 1 − e−γνs − Ve(s) = 0 on [ae,+∞), and Ve(s) ≥ 1 − e−γνs for all s ∈ [0, ae).
Lastly, the inequality (LS − r)(1− e−γνs) ≤ 0 follows from

(LS − r)(1− e−γνs) = (LS − r)Asα = 0, for s ∈ [0, ae),

(LS − r)(1− e−γνs) ≤ 0, for s ∈ [ae,+∞).

Hence, Ve(s, ν) given in Theorem 3.1 is indeed optimal.

Proof of Theorem 3.2 (Log Utility). For any fixed ν, νS follows a GBM process with the
same drift and volatility parameters as S. In other words, we can reduce the problem to that of
selling a single unit of a risky asset whose price process is S̃ := νS with initial value S̃0 = s̃ := νs.
Therefore, we construct a candidate solution of the form Vl(s, ν) = Vl(s̃, 1) = Bs̃α, where B is a
positive constant. The value-matching and smooth-pasting conditions are

Bãα = Ul(ã) = log(ã), (5.12)

Bαãα−1 = U ′
l (ã) =

1

ã
. (5.13)

These equations can be solved explicitly to give a unique solution ã = exp(α−1) and consequently
the coefficient B = 1/αe > 0. The optimal aggregate selling price ã translates into the optimal unit
selling price al = ã/ν = ν−1 exp(α−1).

Next, we show that Vl(s, ν) = Vl(s̃, 1) ≡ Vl(s̃) given in Theorem 3.2 indeed satisfies the varia-
tional inequality

max{(LS̃ − r)Vl(s̃), log(s̃)− Vl(s̃)} = 0, s̃ ∈ R+,

where LS̃ is the infinitesimal generator of the GBM process S̃. This is equivalent to showing that

Vl(s, ν) in (3.2) satisfies the variational inequality (2.6). First, on [0, ã) we have (LS̃ − r)Vl(s̃) =

(LS̃ − r)Bs̃α = 0. Next, observe that the function

(LS̃ − r) log(s̃) = −
σ2

2
+ µ− r log(s̃),
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has a unique root at ϕ̃ = e
µ−σ2/2

r such that

(LS̃ − r) log(s̃)

{
> 0 if s̃ < ϕ̃,

< 0 if s̃ > ϕ̃.

On [ã,+∞), we have (LS̃ − r)Vl(s̃, 1) = (LS̃ − r) log(s̃). To show that (LS̃ − r)Vl(s̃, 1) ≤ 0 we need
to prove that ã > ϕ̃, or equivalently,

1

α
>

µ− σ2/2

r
. (5.14)

This follows directly from the definition of α in (3.2).
Next, we check that Vl(s̃, 1) ≥ log(s̃) for all s̃ ∈ R+. Since Vl(s̃, 1) = log(s̃) on [ã,+∞), it

remains to show that log(s̃) ≤ Vl(s̃, 1) on [0, ã). Using (5.12), the desired inequality is equivalent to

log(s̃)

s̃α
≤

log(ã)

ãα
. (5.15)

Differentiating the left-hand side, we get
(
log(s̃)

s̃α

)′

=
s̃α−1 − αs̃α−1 log(s̃)

s̃2α
=

1− α log(s̃)

s̃α+1
.

The function log(s̃)
s̃α is strictly increasing for s̃ < exp(α−1). Hence, inequality (5.15) follows.

5.2 XOU Model

Proof of Theorem 3.4 (Exponential Utility). Recall that the functions F and G (see (3.5)
and (3.6)) are respectively increasing and decreasing. Since the exponential utility Ue is strictly
increasing, we postulate that the solution to the variational inequality (2.8) is of the form KF (z),
where K is a positive coefficient to be determined. By grouping ν with γ, the problem of selling
ν units of the risky asset can be reduced to that of selling a single unit. The value-matching and
smooth-pasting conditions are

KF (be) = 1− exp
(
−γνebe

)
, (5.16)

KF ′(be) = γνebe exp
(
−γνebe

)
. (5.17)

Using (5.16), we have K = (1− exp
(
−γνebe

)
)F (be)

−1 > 0. Combining (5.16) and (5.17), we obtain
(3.8) for be.

Next, we want to establish that

Ez

{∫ ∞

0
e−rt

∣∣(LZ − r)
(
1− exp

(
−γνeZt

))∣∣ dt
}

< ∞. (5.18)

First, using (2.9) we compute

(LZ − r) (1− exp (−γνez)) =
η2

2
γνez exp (−γνez) (1− γνez) + κ(θ − z)γνez exp (−γνez)

− r (1− exp (−γνez)) .

19



Then, for any T > 0,

Ez

{∫ T

0
e−rt

∣∣(LZ − r)
(
1− exp

(
−γνeZt

))∣∣ dt
}

< Ez

{∫ T

0
e−rt

(
η2

2

(
1 + γνeZt

)
+ κ|θ|+ κ|Zt|+ r

)
dt

}

=

∫ T

0
e−rt

(
η2

2
+

η2γν

2
Ez

{
eZt
}
+ κ|θ|+ κEz {|Zt|}+ r

)
dt

<
η2

2r
+

η2γν

2r
e|z|+|θ|+ η2

4κ +
κ|θ|

r
+

κ

r

(√
η2

πκ
+ |z|+ |θ|

)
+ 1,

where we have used the fact that |Zt| conditioned on Z0 = z has a folded normal distrbution.
Furthermore, since this bound is time-independent and finite, we deduce that (5.18) is indeed true.
We follow the arguments in Section 2 of Zervos et al. (2013) to obtain the representation

1− exp (−γνez) =−G(z)

∫ z

−∞
ΨZ(υ)(LZ − r)(1− exp (−γνeυ)) dυ

− F (z)

∫ +∞

z
ΦZ(υ)(LZ − r)(1− exp (−γνeυ)) dυ, (5.19)

where

ΨZ(z) :=
2F (z)

η2WZ(z)
, ΦZ(z) :=

2G(z)

η2WZ(z)
, (5.20)

and

WZ(z) = F ′(z)G(z) − F (z)G′(z) > 0, ∀z ∈ R.

To see the connection between (5.19) and (3.8), we divide both sides of (5.19) by F (z) and differ-
entiate with respect to z, and get the derivative

(
1− exp (−γνez)

F (z)

)′

=
γνez exp (−γνez)F (z)− (1− exp (−γνez))F ′(z)

F 2(z)
(5.21)

= −

(
G(z)

F (z)

)′ ∫ z

−∞
ΨZ(υ)(LZ − r)

(
1− e−γνeυ

)
dυ

−
G(z)

F (z)
ΨZ(z)(LZ − r)

(
1− e−γνez

)

+ΦZ(z)(LZ − r)
(
1− e−γνez

)

=
WZ(z)

F 2(z)

∫ z

−∞
ΨZ(υ)(LZ − r)

(
1− e−γνeυ

)
dυ =

WZ(z)

F 2(z)
q̃e(z), (5.22)

where

q̃e(z) :=

∫ z

−∞
ΨZ(υ)(LZ − r) (1− exp (−γνeυ)) dυ. (5.23)

By comparing (3.8) to the numerator on the RHS of (5.21), and given that WZ(z)
F 2(z)

in (5.22) is strictly

20



positive, we see that the equation satisfied by be in (3.8) is equivalent to q̃e(be) = 0. Therefore, our
goal is to show that q̃e(z) has a unique and finite root.

Differentiating (5.23) with respect to z yields

q̃′e(z) = ΨZ(z)(LZ − r) (1− exp (−γνez)) .

Furthermore, observe that the sign of q̃′e depends solely on (LZ − r) (1− exp (−γνez)) . We proceed
to show that q̃′e(z) has a unique root. To facilitate computation, we define a new function

h(z) :=
q̃′e(z)

ΨZ(z)
×

exp (γνez)

γνez
= (LZ − r) (1− exp (−γνez))

exp (γνez)

γνez

=
η2

2
(1− γνez) + κ(θ − z)− r

(
exp (γνez)

γνez
−

1

γνez

)
.

Since h is obtained through dividing and multiplying q̃′e by strictly positive terms, any root of q̃′e
must also be a root of h and vice-versa.

To find the root of h, we solve

−
η2γν

2
ez −

r

γν
e−z (exp (γνez)− 1) = κz − κθ −

η2γν

2
. (5.24)

The RHS of (5.24) is a strictly increasing linear function. As for the LHS, we observe that

lim
z→+∞

−
η2γν

2
ez −

r

γν
e−z (exp (γνez)− 1) = −∞,

lim
z→−∞

−
η2γν

2
ez −

r

γν
e−z (exp (γνez)− 1) = r.

Hence, in order for h to have a unique root, it suffices to show that the LHS of (5.24) is strictly
decreasing. Given that r, γ, ν > 0 and ez is strictly increasing, it remains to show that the function
e−z (exp (γνez)− 1) is strictly increasing for all z ∈ R. The quotient rule gives

(
exp (γνez)− 1

ez

)′

=
exp (γνez) (γνez − 1) + 1

ez
.

The numerator exp (γνez) (γνez − 1) + 1 goes to +∞ as z goes to +∞ and goes to 0 as z goes to
−∞. Moreover, the derivative of exp (γνez) (γνez − 1) + 1 is γ2ν2e2z exp (γνez) which is strictly
positive. This proves that the function e−z (exp (γνez)− 1) is indeed strictly increasing and as a
result, h has a unique root, denoted by ζ. Finally, observe that

q̃′e(z) =

{
> 0 if z < ζ,

< 0 if z > ζ.
(5.25)

Combining (5.25) with lim
z→−∞

q̃e(z) = 0, we now see that a unique root, be, such that q̃e(be) = 0,
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exists if and only if lim
z→+∞

q̃e(z) < 0. To examine this limit, we apply the definition of F to get

q̃e(z) =
F 2(z)

WZ(z)

(
1− exp (−γνez)

F (z)

)′

, (5.26)

1− exp (−γνez)

F (z)
> 0, ∀z ∈ R, lim

z→+∞

1− exp (−γνez)

F (z)
=

1

+∞
= 0. (5.27)

Since q̃e is strictly decreasing in (ζ,+∞), (5.26) and (5.27) hold if and only if lim
z→+∞

q̃e(z) < 0. This

shows, as desired, that there exists a unique and finite be such that

γνebe exp
(
−γνebe

)
F (be) =

(
1− exp

(
−γνebe

))
F ′(be).

Moreover, by (5.25), we see that

be > ζ and q̃e(z) > 0, ∀z < be. (5.28)

Now, in order to ascertain the optimality of Ṽe presented in (3.7), we re-express Ṽe in terms of
the variable z, and show that it satisfies the following variational inequality:

max{(LZ − r)Ṽe(e
z), (1− exp (−γνez))− Ṽe(e

z)} = 0, ∀z ∈ R.

Indeed, this follows from direct substitution. First, on [be,+∞), we have

(1− exp (−γνez))− Ṽe(e
z) = (1− exp (−γνez))− (1− exp (−γνez)) = 0.

On (−∞, be), we apply (5.26) and (5.28) to conclude that

(1− exp (−γνez))− Ṽe(e
z) = (1− exp (−γνez))−

1− exp
(
−γνebe

)

F (be)
F (z) ≤ 0.

Next, we verify that (LZ − r)Ṽe(e
z) ≤ 0, ∀z ∈ R. To this end, we have

(LZ − r)Ṽe(e
z) = (LZ − r)KF (z) = 0, on (−∞, be),

(LZ − r)Ṽe(e
z) = (LZ − r) (1− exp (−γνez)) ≤ 0, on [be,+∞),

as a consequence of (3.4) and (5.25). Hence, we conclude the optimality of Ṽe in (3.7).

Proof of Theorem 3.5 (Log Utility). Since log(νX) = Z + log(ν) where Z is an OU process,
the optimal asset sale problem can be viewed as that under an OU process with a linear utility and
a transaction cost (resp. reward) of value log(ν) if ν < 1 (resp. ν > 1) (see Leung and Li (2015)).

The functions F and G given in (3.5) and (3.6) are respectively strictly increasing and decreasing
functions. For any given ν, Z + log(ν) is also a strictly increasing function. This prompts us to
postulate a solution to the variational inequality (2.8) of the form DF (z) where D > 0 is a constant
to be determined. Consequently, the optimal log-price thershold bl is determined from the following
value-matching and smooth-pasting conditions:

DF (bl) = bl + log(ν), and DF ′(bl) = 1. (5.29)
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Combining these equations leads to (3.10) and (3.11). Straightforward computation yields

(LZ − r)(z + log(ν)) = −(κ+ r)z + κθ − r log(ν),

which is a strictly decreasing linear function with a unique root ℓ. For any T > 0,

Ez

{∫ T

0
e−rt

∣∣(LZ − r)(Zt + log(ν))
∣∣ dt
}

< Ez

{∫ T

0
e−rt ((κ+ r)|Zt|+ κ|θ|+ r| log(ν)|) dt

}

=

∫ T

0
e−rt ((κ+ r)Ez {|Zt|}+ κ|θ|+ r| log(ν)|) dt

<
κ+ r

r

(√
η2

πκ
+ |z|+ |θ|

)
+

κ|θ|

r
+ | log(ν)|,

which implies that

Ez

{∫ ∞

0
e−rt

∣∣(LZ − r)(Zt + log(ν))
∣∣ dt
}

< ∞.

With this, we follow the arguments in Section 2 of Zervos et al. (2013) to obtain the representation

z + log(ν) =−G(z)

∫ z

−∞
ΨZ(υ)(LZ − r)(υ + log(ν)) dυ − F (z)

∫ +∞

z
ΦZ(υ)(LZ − r)(υ + log(ν)) dυ,

(5.30)

where ΨZ and ΦZ are as defined in (5.20). We relate (5.30) to (3.11) by first dividing both sides
of (5.30) by F (z) and differentiating with respect to z. This yields

(
z + log(ν)

F (z)

)′

=
F (z)− F ′(z)(z + log(ν))

F 2(z)
(5.31)

= −

(
G(z)

F (z)

)′ ∫ z

−∞
ΨZ(υ)(LZ − r)(υ + log(ν)) dυ

−
G(z)

F (z)
ΨZ(z)(LZ − r)(z + log(ν)) + ΦZ(z)(LZ − r)(z + log(ν))

=
WZ(z)

F 2(z)

∫ z

−∞
ΨZ(υ)(LZ − r)(υ + log(ν)) dυ =

WZ(z)

F 2(z)
q̃l(z),

where

q̃l(z) :=

∫ z

−∞
ΨZ(υ)(LZ − r)(υ + log(ν)) dυ.

Comparing (3.11) and the RHS of (5.31), along with the facts that F > 0 and WZ > 0, we see
that solving equation (3.11) for the log-price threshold is equivalent to solving

q̃l(z) = 0.

Direct differentiation yields that

q̃′l(z) = ΨZ(z)(LZ − r)(z + log(ν))

{
> 0 if z < ℓ,

< 0 if z > ℓ.
(5.32)
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The fact that limz→−∞ q̃l(z) = 0 implies that there exists a unique bl such that q̃l(bl) = 0 if and
only if limz→+∞ q̃l(z) < 0. By the definition of F , we have

q̃l(z) =
F 2(z)

WZ(z)

(
z + log(ν)

F (z)

)′

,
z + log(ν)

F (z)
> 0, ∀z > − log(ν), lim

z→+∞

z + log(ν)

F (z)
= 0.

(5.33)

Given that q̃l is strictly decreasing in (ℓ,+∞), we conclude that in order for (5.33) to hold, we
must have limz→+∞ q̃l(z) < 0. This means that there exists a unique and finite bl such that
(bl + log(ν))F ′(bl) = F (bl). Moreover, given (5.32), we have

bl > ℓ and q̃l(z) > 0, ∀z < bl. (5.34)

Furthermore, since both F and F ′ are strictly positive, bl + log(ν) must also be positive.
Lastly, we need to check that the following variational inequality holds for any fixed ν:

max{(LZ − r)Ṽl(e
z), (z + log(ν))− Ṽl(e

z)} = 0, ∀z ∈ R. (5.35)

To begin, on the interval [bl,+∞), we have (z + log(ν))− Ṽl(e
z) = (z + log(ν))− (z + log(ν)) = 0.

Next, on the region (−∞, bl), we have

(z + log(ν))− Ṽl(e
z) = (z + log(ν))−

bl + log(ν)

F (bl)
F (z) ≤ 0

since the function z+log(ν)
F (z) is increasing on (−∞, bl) due to (5.33) and (5.34). Also, we note that

(LZ − r)Ṽl(e
z) = (LZ − r)DF (z) = 0, on (−∞, bl),

(LZ − r)Ṽl(e
z) = (LZ − r)(z + log(ν)) ≤ 0, on [bl,+∞).

The latter inequality is true due to (5.32) and (5.34). Ṽl defined in Theorem 3.5 is therefore the
optimal solution to the optimal asset sale problem under log utility.

Proof of Theorem 3.6 (Power Utility). Since the powered XOU process, Xp, is still an XOU
process, the asset sale problem is an optimal stopping problem driven an XOU process, which has
been solved by the authors’ prior work; see Theorem 3.1.1 of Leung et al. (2015). Therefore, we
omit the proof.
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