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The lead-lag relationship between stocks is an interesting phenomenon, which has been empirically
seen to widely exist in stock markets. This paper aims to discover the dynamic patterns of the daily
lead-lag relationships between stock pairs, to detect the features of the discovered dynamic patterns,
and to explore which factors significantly affect the emergence of the feature. To this end, a series of
statistical analyses is conducted to find that the (longest) successive lead-lag days satisfy a power-
law distribution in the two mainland stock markets in China, which answers the question regarding
the dynamic pattern. Note that the heavy tail of the power-law distribution is the core of the discov-
ered dynamic pattern. A formal and solid definition of the lead-lag effect is provided by statistical
testing, and then the corresponding detection method is designed and applied to obtain the heavy
tail. Finally, an empirical study of the detected stocks with lead-lag effect is further conducted via
an exponential random graph model (ERGM). Our work adds new knowledge to the lead-lag phe-
nomenon in the financial domain, provides a formal definition of the lead-lag effect and proposes a
new detection method benefiting future studies on the lead-lag relationship in financial markets. It
further contributes to the existing relevant literature by a deep understanding of which factors cause
the emergence of the power-law distribution discovered.

Keywords: Stock market; Lead-lag network; Lead-lag effect; Complex network; Power-law distri-
bution
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1. Introduction

The lead-lag effect, a phenomenon where one security leads
the price movement of another security with some time delay,
has been empirically noted to widely exist in financial mar-
kets generally (Tolikas 2018) and particularly in stock markets
(Wang et al. 2017). Within a given stock market, if a stock is
regarded as a node and a lead-lag relationship between a stock
pair is regarded as a direct link, then a lead-lag network can
be established by the stocks and their relationships. When a
lead-lag relationship is detected on each trading day, the lead-
lag network obtained is called a daily lead-lag network. There
is no doubt that the lead-lag networks obtained will evolve
day by day. However, do stable patterns emerge during daily
evolutionary processes? Furthermore, can we find some fac-
tors that can explain the discovered patterns if they do indeed
exist? Accordingly, this paper aims to explore the dynamic
patterns of the daily lead-lag networks obtained in several

*Corresponding author. Email: liyongli@hit.edu.cn

targeted stock markets and then to examine which factors have
a significant influence on the dynamic patterns discovered.

Once the above mentioned research questions are
answered, we will gain new insights into macroscopic emer-
gence in financial markets. In fact, this phenomenon of
macroscopic emergence has been widely discovered in social
systems. For example, the reply times of e-mail have been
found to satisfy a power-law distribution when the e-mail
reply times of numerous persons are statistically analyzed,
although the reply times of one single person or several per-
sons would present no stable pattern and even seems random
(Barabasi and Albert 1999, Barabasi 2005). In other words,
so-called macroscopic emergence means that one event is
random or no regular pattern is seen from the individual
level, but will present stable patterns if seen from the group
level (Ryan 2007). This phenomenon inspires us to explore
whether macroscopic emergence also exists in the financial
domain. Then, we choose the daily lead-lag relationships
between stock pairs as the analyzed target. It is worth not-
ing that the daily lead-lag relationship between one single
stock pair would be randomly formed and would present no
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particular pattern during a period, but when these relation-
ships between all stock pairs in a market are considered, some
interesting patterns are likely to emerge from such a macro
perspective.

Moreover, answering our research question is beneficial to
risk management in stock markets since the answer provides
knowledge of the driving factors that lead to the dynamic
pattern of the lead-lag relationship mentioned above. The
lead-lag relationships between stock pairs will be a chan-
nel for transforming the risk by considering the inner factors
that lead to the lead-lag relationship. Once the driving fac-
tors in stock markets are found, the predictability of market
risk will be improved, which is a critical step for the effec-
tive management of financial stability. Although the topic of
the lead-lag relationship has been discussed in much exist-
ing literature such as the works of Stübinger (2018), Challet
et al. (2018), and Basnarkov et al. (2020), only a few studies
have focused on mining the driving factors that cause the lead-
lag relationship. For example, a famous work by Kobayashi
and Takaguchi (2018) found the stable dynamic pattern of
the lead-lag relationship in interbank credit networks and
explained the origin of the “social” dynamics pattern. Paral-
lel to these studies, this paper adopts the dynamic network
evolution model, i.e. the exponential random graph model
(see Harris (2013) for a brief introduction or Lusher et al.
(2013) for a more detailed study), to analyze the sequence of
daily lead-lag networks by empirically examining the driving
factors.

Although the research questions to be explored sound
meaningful and exciting, it is not easy to provide convinc-
ing answers. First, the definition of the lead-lag effect has
not yet been unified, and thus we should propose an explicit
definition which is often ignored in the existing literature.
Second, many factors may be potential influencing factors
that explain the phenomenon of macroscopic emergence, but
a large amount of data is needed to determine the signif-
icant factors. After addressing these difficulties, the main
findings and our contributions can be summarized into three
aspects.

First, one stock pair can form a lead-lag relationship on suc-
cessive trading days (often many times) during the analyzed
period. Then, considering all stock pairs’ successive trading
days as mentioned above, their distribution is found to follow
a power-law distribution in two stock markets-the Shanghai
Stock Exchange and the Shenzhen Stock Exchange. The dis-
covered distribution can be regarded as a stable pattern of the
dynamic lead-lag relationships among all the stock pairs in
the two stock markets, which fulfills the examples of macro-
scopic emergence in the financial domain from the perspective
of network science.

Second, the heavy tail is the key part of one power-law dis-
tribution, which hints that the stock pairs in the scope of the
heavy tail will be critical to analyzing the formed power-law
distribution in particular or the system’s macroscopic emer-
gence in general. Note that if all the lead-lag relationships are
randomly formed at the individual level, the distribution of the
successive lead-lag days will be an exponential distribution at
the system level rather than the discovered power-law distri-
bution. In order to distinguish the key part of the power-law
distribution from the exponential distribution, a new approach

for detecting the lead-lag effect, which explicitly specifies the
definition of the lead-lag effect according to the principle of
statistical test, is proposed in this paper. This contribution of
providing a solid definition lays a foundation for detecting the
lead-lag effect in the relevant research fields.

Third, if some factors are found to significantly affect the
formation of the heavy tail of the observed power-law distri-
bution via empirical analysis, they are influencing factors that
will contribute to risk management in stock markets. Note
that the heavy tail refers to the special parts that are worthy
of our attention because the number of stock pairs within the
heavy tail is not too small to be ignored in a power law dis-
tribution. Although several risk management tools for stock
markets, such as those by Acemoglu et al. (2015), Berndsen
et al. (2016) and Li et al. (2018), have been proposed, the fac-
tors we examine will become new indicators that can predict
price fluctuations, risk transmission and even market stability
through the lead-lag effect.

In order to logically and clearly present our work and
contributions, the remaining parts are organized as follows:
Section 2 reviews the related work on the lead-lag relation-
ship studied in the financial domain. Section 3 reports the
dynamic patterns of daily lead-lag networks by selecting data
and performing statistical analysis. Section 4 defines the lead-
lag effect from the stable dynamic patterns revealed and
further provides the approach for detecting stock pairs with
the defined lead-lag effect. Section 5 empirically examines
which factors significantly explain the formation of the lead-
lag effect via the exponential random graph model (ERGM,
for short). Section 6 concludes and discusses future work.

2. Related work

The lead-lag network studied in this paper is essentially one
kind of stock network, and thus, we first briefly review the
existing research on stock networks. Generally, the existing
literature in this direction can be classified according to the
network types. As shown in Figure 1, two common network
types are often seen: synchronous networks and asynchronous
networks. The so-called synchronous stock network is an effi-
cient tool for summarizing and visualizing the correlations
between stocks or stock markets by utilizing the synchronous
data of the analyzed targets (Tse et al. 2010), such as the clos-
ing prices of different stocks on the same day (Boginski et
al. 2006, Kinnunen 2017). In contrast to a synchronous stock
network, an asynchronous stock network, such as the lead-
lag network (Basnarkov et al. 2020) and the asynchronous

Figure 1. Structure of the related work.
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trading network (Liu et al. 2010), focuses on the stocks’
asynchronous data (Cai et al. 2017).

Further focusing on our studied lead-lag relationship in
stock markets, one early study is Tóth and Kertész (2006),
which analyzed how the lead–lag relationships between daily
returns of stocks evolved. In addition to the abovemen-
tioned analysis of daily data, a series of studies have been
conducted on high-frequency data, such as Jong and Nij-
man (1997), Huth and Abergel (2011, 2014), Pomponio and
Abergel (2013), Buccheri et al. (2019) and many others not
mentioned. Since the lead-lag in financial markets is a classi-
cal topic, there have been numerous relevant researches on
this topic. Although we cannot review all of them in this
paper, we will select the most relevant ones with the lead-
lag networks from them. In order to review these selected
aspects logically, four aspects (i.e. existence, detection, explo-
ration and explanation), as shown in Figure 1, are assessed and
organized as follows.

Existence. The lead-lag effect has been empirically evi-
denced to widely exist in stock markets. For example, Gong et
al. (2016) studied the lead-lag relationship between the China
Securities Index 300 (CSI 300), Hang Seng Index (HSI), Stan-
dard and Poor’s 500 (S&P 500) Index and their associated
futures to reveal the dynamic patterns of their relationships
over time. In addition, Hayashi and Koike (2018) proposed
wavelet-based methods to conduct high-frequency lead-lag
analysis between stocks in the selected stock markets. Sim-
ilar existing studies can also be found in Fonseca and Zaatour
(2017), Dao et al. (2018), Scherbina and Schlusche (2018),
O’Neill and Rajaguru (2019), Yao and Li (2020), and many
others not mentioned. These existing studies have laid a solid
foundation for our work by revealing that the lead-lag effect is
quite likely to exist in our targeted stock markets and is there-
fore worth exploring and discovering. However, there is no
precise definition of the lead-lag effect, although many litera-
tures have focused on this phenomenon. At least, the various
definitions of the lead-lag effect will cause difficulties in com-
paring the findings of the existing studies. Thus, this paper
potentially contributes by providing a precise definition of
the lead-lag effect based on a generally accepted principle or
criterion.

Detection. Apart from the abovementioned empirical find-
ings, many approaches have been proposed to detect the
lead-lag effect. The existing methods include but are not lim-
ited to the following: Fiedor (2014) created an information-
theoretic approach to detect the lead-lag effect in financial
markets; Curme et al. (2015) proposed a numerical method
to statistically validate links in correlation-based networks
to detect the lead-lag relationship; the DTW (dynamic time
warping) algorithm used in the asynchronous time series anal-
ysis became a common approach for constructing the lead-lag
network (Ito and Sakemoto 2020); the Granger causality test
also made a significant contribution to the discovery of the
lead-lag relationship (Výrost et al. 2015, Basnarkov et al.
2020); and recently, O’Neill and Rajaguru (2019) designed
a new response surface analysis of critical values for the
lead-lag ratio based on high-frequency and non-synchronous
financial data. Different from these excellent and some-
what complicated detection approaches, a solid statistical test
model is designed in this paper to detect stock pairs with a

lead-lag effect. More importantly, the rationality, robustness
and even predictability of the proposed model are deeply stud-
ied. From this viewpoint, our work has contributed a new
approach to the collection of approaches for detecting the
lead-lag effect.

Exploration. Earlier studies often explored the functions
of the lead-lag relationship on stock return correlations and
market performance. For example, Tóth and Kertész (2007,
2009) explored the functions of the lead-lag relationship in
forming the Epps effect, and a similar study can also be
found in Huth and Abergel (2011). However, with the devel-
opment of dynamic network analysis technology, it is a new
trend to study the dynamic pattern of the lead-lag correlations
in stock markets. For example, Xia et al. (2018) examined
the emergence and temporal structure of lead-lag correlations
in collective stock dynamics, Curme et al. (2019) answered
how lead-lag correlations affect the intraday pattern of col-
lective stock dynamics, and Campajola et al. (2020) unveiled
the relation between herding and liquidity with trader lead-
lag networks. Following this trend, this paper explores the
dynamic pattern of lead-lag networks in the targeted Chi-
nese stock markets, which will contribute new findings to this
stream of literature.

Explanation. In addition to exploring dynamic patterns, this
paper further aims to reveal the causes of collective dynamic
patterns by mining the significant explanatory factors. One
direction of the related work is to unveil the formation mech-
anism of the dynamic patterns discovered by simulation anal-
ysis (Kobayashi and Takaguchi 2018), and the other direction
is to conduct empirical analysis to statistically test the signif-
icance of the potential influencing factors and trading mode
(Pomponio and Abergel 2013, Huth and Abergel 2014). Our
work uses empirical analysis and adopts the exponential ran-
dom graph model (ERGM) to examine the influencing factors
in the context of dynamic daily lead-lag networks. Note that
ERGM is a powerful tool for modeling dynamic networks,
especially in the stock markets, and only a few papers have
adopted this model in the financial domain (Deev and Lyocsa
2020). Accordingly, this paper, on one hand, will mine and
examine the influencing factors that drive the formation of
the dynamic patterns discovered, compare them with exist-
ing literature and discuss the new findings; on the other hand,
our work also adds a new application of the ERGM in stock
markets, contributing to both relevant fields.

3. Basic model and statistical results

3.1. Daily lead-lag networks

A lead-lag network is one type of directed network, where a
node represents a stock and a link represents the lead-lag rela-
tionship. We choose the daily stock return rate as the indicator
to define the daily lead-lag relationship. Taking stock i and j as
examples, if the return rate of stock j on day t is quite close to
that of stock i on day t-1, the stock pair is deemed to possess a
lead-lag relationship on the two successive days. Here, stock
i is the leader and stock j is the follower, and a directed link
is formed from stock i to stock j in the established lead-lag
network on day t.
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Let vi,t denote the return rate of stock i on day t, and it can
be calculated by

vi,t = pi,t − pi,t−1

pi,t−1
, (1)

where pi,t denotes the closing price of stock i on day t. In
this paper, the adopted closing price is the restoration of the
rights price rather than the ex-rights price in order to elimi-
nate the effects of ex-dividends and ex-rights. Then, given a
man-made threshold variable ε > 0 reflecting the degree of
the abovementioned closeness, the condition for forming a
directed link from stock i to stock j in the lead-lag network
on day t is

{
(1 − ε)vi,t−1 ≤ vj,t ≤ (1 + ε)vi,t−1, when vi,t−1 ≥ 0;
(1 + ε)vi,t−1 ≤ vj,t ≤ (1 − ε)vi,t−1, when vi,t−1 < 0.

(2)

Furthermore, let Gt denote the daily lead-lag network of
day t. If stock i and stock j meet the conditions in Formula
(2), it holds that gij,t = 1; otherwise, gij,t = 0. Here, gij,t is the
element of Gt and represents the lead-lag relationship from
leader stock i to follower stock j. Accordingly, the obtained
daily lead-lag network Gt can be expressed as a 0–1 matrix
since all its elements are either 0 or 1. In particular, our work
allows one stock to follow itself.

Note that it takes two days’ stock closing prices to deter-
mine one daily lead-lag network, and thus T successive days’
trading information leads to T-1 daily lead-lag networks.
Then, all the formed daily lead-lag networks are combined,
according to their time-stamp order, to constitute a time series
of networks. The series of lead-lag networks are easy to form
owing to the very little information needed so as to facilitate
the analysis and its extensions. Besides, the time series of net-
works lay the foundation for analyzing their dynamic patterns,
which is promising for providing some insightful unknown
findings.

3.2. Data set and basic statistical results

3.2.1. Data preparation. Two famous stock markets are
selected in this paper for analysis and comparison: the Shang-
hai Stock Exchange (SSE) and the Shenzhen Stock Exchange
(SZSE) in China. The analyzed time period is from the begin-
ning of 2015 to the end of 2019; and on each trading day in the
five years, the closing prices of all the stocks traded in the two

stock markets are collected from http://cndata1.csmar.com/.
Once the data is obtained, the daily lead-lag networks in each
market can be immediately obtained based on Equation (1)
and Formula (2). Here, there are a total of 1219 trading days
from the SSE or the SZSE during the targeted time period.

During data preparation process, there are two things worth
noting: (1) Many new stocks listed in two markets and many
delisted during the five years, and thus, the total number of
stocks traded is not constant. As a result, the total number of
nodes in the daily lead-lag network could be different. (2) On
almost every trading day, there are some stocks that are sus-
pended due to some reasons or rules, and we use “Null” to
mark the closing prices of these suspended stocks. Accord-
ingly, the suspended stocks are isolated nodes in the lead-lag
network on the day of their suspension.

3.2.2. Basic statistical results. Based on the prepared data
and the given ε, these daily lead-lag networks can be achieved
according to Equation (1) and Formula (2). In order to illus-
trate the characteristics of the obtained daily lead-lag net-
works, we explore the answers to the following two questions:
(a) the relationship between the daily lead-lag network’s size
N and number of edges M, and (b) the ratios of three types of
nodes in the daily lead-lag network: the pure leader, the pure
lagger, and the intermediary node that acts both the leader and
the follower. The main results are displayed in Figures 2 and
3, where ε is set as 20%. Since ε is a man-made variable by
recalling Formula (2), its robustness test will be conducted in
the later part of this section.

The size of the lead-lag network increases on average in
both stock markets over time, as displayed in Figure 2. More
importantly, five years of data lead to numerous daily combi-
nations (N, M ) that allow us to fit a function between N and
M. As a result, superlinearity is revealed in both stock mar-
kets but with different parameters: in the SSE and M ∝ N1.475

in the SZSE. These findings suggest that the average degree
of a daily network (i.e. M /N) increases with orders N0.733

and N0.475 in the two sM ∝ N1.733tock markets, respectively.
Accordingly, the difference between the two markets shows
that as network size increases, the growth rate of the network
density of the SSE is faster than that of the SZSE.

There are three types of nodes in a daily lead-lag network:
the pure leader, the pure follower and the intermediary. The
former two are easy to understand by their names, and the

(a) (b)

Figure 2. Relationship between network size N and edge number M in two stock markets.
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(a) (b)

Figure 3. Ratios of pure leader, pure follower and intermediary in two stock markets.

latter acts as both a leader and a follower. The existence of
three types of nodes rather than two types implies that the
triangle would be a common structure in the daily lead-lag
network, which suggests that we choose the network struc-
ture variable in our empirical analysis. Furthermore, the ratios
of the three types of nodes are almost stable during the five
years as shown in Figure 3, although fluctuations sometimes
appear. Besides, the ratio of intermediaries in any stock mar-
ket is much higher than the ratios of the other two types, but
some differences exist between the two markets: the ratio of
pure leaders in the SSE is higher than that in the SZSE, and
the fluctuation in the SSE is slightly more dramatic than that
in the SZSE.

3.3. Dynamics patterns of daily lead-lag networks

Among all the potential variables reflecting the dynamics pat-
terns, we choose the variable of edge duration in order to
highlight the critical finding. The so-called edge duration,
denoted as d, is defined as the number of successive trad-
ing days on which a leader stock and a follower stock form
an edge in the successive daily lead-lag network. Note that
the value of d of the same stock pair is quite likely not to be
unique during the analyzed period because a stock pair can
form the successive lead-lag relationship many times. Next,
the following subsection will present the distribution of the
edge duration and test the possible distribution assumption,
and then the last subsection will discuss how the different
values of ε affect the results as robustness analysis.

3.3.1. Distributions of the edge duration (variable d)
in the two stock markets. Aggregating all pairs in the
obtained daily lead-lag networks, the distributions of d are
obtained and displayed in Figure 4, where blue circles and
red circles indicate the results for the SSE and the SZSE,
respectively. The two symbols show the same pattern in the
graph: they both present almost a line curve in the adopted
double-logarithm (i.e. log–log) coordinates, which implies
that the variable d is likely to satisfy a power-law distribu-
tion. Accordingly, regression analysis is conducted to find that
p(d) ∝ d−1.213 for the SSE and p(d) ∝ d−1.238 for the SZSE,
showing that they are quite close in the two stock markets.
Note that the exponents of the two discovered power-law dis-
tributions are both less than 2, and their generic properties

Figure 4. Distribution of edge duration (the variable d) aggregated
over all pairs.

are quite different from those with an exponent greater than
2 (Seyed-Allaei et al. 2006). In detail, the expected value of
a power-law distribution with an exponent greater than 2 is
finite and independent of the number of elements considered,
whereas the opposite is true if the exponent is less than 2.
Accordingly, the mean edge durations of the two discovered
power-law distributions will increase with the network size N
(or the total number of stock pairs N2), which implies that the
generic properties of the discovered power-law distributions
are dependent on N or N2.

More precisely, both the Kolmogorov–Smirnov test (K-S
test, for short; Clauset et al. 2009) and the Kuiper test (Kuiper
1960) are conducted to test the discovered power-law distribu-
tion with the null hypothesis “the tested distribution satisfies
a power-law distribution”. Then, the obtained p values are
0.442 for the SSE and 0.936 for the SZSE via the K-S test
and meanwhile 0.969 for the SSE and 0.780 for the SZSE via
the Kuiper test, which cannot reject the null hypothesis. To
ensure the correctness of the finding, we further conduct the
K-S test and the Kuiper test to check whether the assump-
tion of an exponential distribution can be accepted, which is
often done to compare the results with the power-law distri-
bution. Then, the obtained p values of the two stock markets
are 6.1E-05 and 8.0E-08 via the K-S test and 4.8E-06 and
5.3E-07 via the Kuiper test, and thus, the assumed exponen-
tial distribution is rejected. Therefore, the edge duration (or
the variable d) satisfies a power-law distribution in both stock
markets, suggesting that the number of pairs with quite long
successive lead-lag days is not too small to be ignored. This
finding inspires us to focus on the heavy tail of the power-law
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distribution obtained, i.e. such pairs that have a “sufficiently”
long edge duration.

3.3.2. Robustness analysis. Recalling Equation (2), the
man-made threshold ε will affect the edge formation in a daily
lead-lag network and further influence the distribution of the
edge duration. Here, the robustness analysis focuses on how
the man-made threshold ε affects the distribution of the edge
duration: if the distributions obtained under different values of
ε differ greatly, we will conclude that the output of our model
is sensitive to the man-made variable ε, or that it is not robust,
and vice versa. To this end, KD(εi, εj) is defined as Equation
(3). By following the Kuiper statistic test (Kuiper 1960), the
difference between two distributions obtained under εi and εj

is measured.

KD(εi, εj) = max
d

(cdf (d; εi) − cdf (d; εj))

+ max
d

(cdf (d; εj) − cdf (d; εi)), (3)

where cdf (d; εi) and cdf (d; εj) denote the cumulative dis-
tribution functions of the edge duration d under the given
thresholds εi and εj, respectively. Besides, since the measure-
ment defined in Equation (3) is a Kuiper statistic, the Kuiper
test can further be conducted to check whether the difference
between two distributions is significant. Considering different
combinations of εi and εj, Tables 1 and 2 report the statistic
KD(εi, εj) of each combination and its corresponding p value
via the Kuiper test.

The results marked with “bold type” in Tables 1 and 2
mean that the two distributions cannot be deemed to be dif-
ferent under the 0.05 significance level. As a result, when
|εi − εj| ≤ 10%, the difference of the distributions obtained
under two threshold values is not significant, which implies
that our model’s output is robust if the deviation of two thresh-
old values is not too large. Besides, unsurprisingly, DD(εi, εj)

increases as |εi − εj| increases in all the combinations of εi

and εj in the two stock markets; and even if the deviation of
two threshold values is as large as 20%, the difference of two
distributions under some combinations is also not significant.
In summary, our model’s outputs can be deemed to be robust

to some extent by considering that they are not very sensi-
tive to the man-made threshold ε. Since the subsequent work
is mainly dependent on the distribution of the edge duration,
the robustness test in this subsection is fundamental for the
following section.

4. Detecting the lead-lag effect from the observed
power-law distribution

4.1. Definition of lead-lag effect

As the discovered power-law distributions imply, a fair num-
ber of stock pairs have long successive lead-lag days (i.e.
a large d) such that these pairs should not be ignored.
Accordingly, our definition of the lead-lag effect concerns
the “length” of successive lead-lag days; in other words, the
lead-lag effect means that the successive lead-lag days are
long enough so that their length significantly differs from the
lengths caused by random events. Once the lead-lag effect can
be detected, the core of our studied dynamic pattern can be
mastered, which not only facilitates the origins of the dynamic
pattern, but also benefits the prediction of stock fluctuation
and risk transmission. Although the direction sounds exciting
and promising, we should first answer one important ques-
tion: how to formally define the lead-lag effect since the above
words “long enough” are vague.

Before formally answering the question, let us recall the
following fact: the successive lead-lag relationship between
the same stock pair often occurs more than once, and therefore
one stock pair is likely to have more than one value of d. We
use dij,ω to express the successive lead-lag days from leader i
to follower j that occurred at the ωth time. In order to highlight
the longest period of lead-lag days of one stock pair and elim-
inate the confusion caused by its multiple successive lead-lag
days, we use dij to denote the maximal value of dij,ω among all
the occurrences via the following mathematical expression:

dij = max
ω

{dij,ω}. (4)

Here, dij could be zero if no lead-lag edge exists from leader i
to follower j in all daily lead-lag networks. Note that the graph

Table 1. Robustness results in SSE.

KD (p) 15% 20% 25% 30% 35%

10% 0.148 (0.973) 0.258 (0.255) 0.326 (0.039) 0.366 (0.009) 0.390 (0.004)
15% 0.110 (0.999) 0.178 (0.851) 0.218 (0.539) 0.304 (0.077)
20% 0.070 (0.999) 0.155 (0.957) 0.247 (0.319)
25% 0.084 (0.999) 0.177 (0.856)
30% 0.093 (0.999)

Table 2. Robustness results in SZSE.

KD (p) 15% 20% 25% 30% 35%

10% 0.154 (0.948) 0.259 (0.222) 0.318 (0.042) 0.349 (0.014) 0.383 (0.004)
15% 0.1045 (0.999) 0.1632 (0.914) 0.2370 (0.362) 0.3374 (0.022)
20% 0.0819 (0.999) 0.1762 (0.841) 0.2765 (0.145)
25% 0.0942 (0.999) 0.1946 (0.704)
30% 0.1004 (0.999)
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Figure 5. Distribution of the longest successive lead-lag days (i.e.
dij) between all pairs.

displayed in Figure 4 is the distribution of dij,ω aggregating all
pairs and all occurrences. Different from Figure 4, Figure 5
displays the two distributions of dij in two stock markets.
Similar to the above statistical analysis process, the variables
dijs in the two markets both satisfy a power-law distribution,†
which inherits the property illustrated in Figure 4. Hereafter,
when we mention the distribution of successive lead-lag days,
the distribution of dij is as defined in Equation (4).

Returning to our question, its core is to find an objective
criterion for judging the concept of “long enough”. Without
serious considerations, it seems reasonable to set a statistical
significance level (e.g. 0.01) and obtain the statistically sig-
nificant node pairs from the distributions shown in Figure 5.
However, the above approach does not correctly understand
the meanings of the “lead-lag effect” because whether one
effect holds or not requires statistically testing whether one
event can be deemed to be a rare event in a random trial. In
other words, the lead-lag effect should be defined by compar-
ing it with a random event: if the successive lead-lag days of
one pair can be judged as a rare event based on a random
trial, the corresponding pair is defined to hold the lead-lag
effect.

In order to make the abovementioned comparison fair, the
generated daily random network should keep the same degree
sequence with its same day’s real lead-lag network. Hereafter,
the real lead-lag network is named the “referential network”
by considering that its link density and degree distribution
should be inherited from its same day’s random network.
Then, the distribution of the successive lead-lag days can
be determined from the daily random networks, similar to
what we have done based on the daily real lead-lag networks.
Given a statistical significance level, it is not difficult to judge
whether one successive lead-lag day is long enough to be a
rare event based on the achieved distribution. Accordingly,
the definition of the lead-lag effect is formally provided in
Definition 1.

Definition 1 Lead-lag effect Given a significance level � of
the statistical test, the criterion d� can be determined from
the obtained distribution of the successive lead-lag days. For
any stock pair (i, j), the lead-lag effect from i to j holds if and
only if dij ≥ d�, and the detected pairs are called the lead-lag
pairs. �

† The result of the statistical tests for satisfying the power-law distri-
bution in both markets is 0.093 and 0.576 (p value), respectively.

4.2. Detection method and an example

4.2.1. Detection method. According to Definition 1, the
main task of the detection method is to generate the daily
random network preserving the full degree sequence of
its referential network. Fortunately, the configuration model
(Newman et al. 2001) adapts for solving this task and its
codes can be directly achieved from https://networkx.org/
documentation/stable/_modules/networkx/generators/degree_
seq.html#directed_configuration_model. Note that the adopted
configuration model can only obtain approximate solutions in
our context due to deleting the duplicate edges; thus, a larger
network size implies a more accurate solution by considering
that the likelihood of duplicate edges appearing decreases as
the network size increases. In other words, the random net-
work achieved via the configuration model can only have an
approximately identical link density and degree distribution
with its referential network; however, the network sizes of the
two analyzed stock markets are large enough to guarantee that
the difference is within limits of acceptability.

Next, one group of simulations will generate each day’s
random network that constitutes a time series set denoted as
{GR

1 , GR
2 , · · · , GR

t , · · · , GR
T }, where T denotes the total num-

ber of trading days and equals 1219 in this paper (recalling
Section 3.2.1) and the superscript “R” highlights the random
generation distinguished with the real ones. Then, the distri-
bution of dij can be achieved from {GR

1 , GR
2 , · · · , GR

t , · · · , GR
T },

similar to what has done in Figure 5. In order to make
the results sound, hundreds of groups of simulations are
conducted to obtain hundreds of the abovementioned distri-
butions. Next, one comprehensive distribution of dij can be
obtained by averaging all the achieved distributions. In the
last step, given a significance level �, the threshold value d�

can be achieved from the comprehensive distribution as the
judgment criterion. Until now, all the variables in Definition
1 have been determined, and the pairs with the lead-lag effect
can be detected.

4.2.2. An explanatory example. An example is provided
here in order to explain and reveal the above proposed detec-
tion method. This example only analyzes 10 stocks as well
as their closing prices on 6 successive trading days for con-
cision. Based on the input, five daily lead-lag networks are
obtained as displayed in Figure 6. In this graph, each node
represents one stock, the node size reflects the node degree
and the directed link points from the leader to the follower.
Besides, the arc represents the loop showing that the case of
following oneself is allowed.

According to the proposed detection method, the above-
mentioned configuration model is adopted to generate the
daily random networks by taking the daily networks displayed
in Figure 6 as referential networks. Figure 7 displays the result
via one group of simulation, where each day’s random net-
work preserves the same degree sequence of its corresponding
referential network.

Then, 500 groups of simulations will generate 500 groups
of random lead-lag networks that immediately lead to the
distribution of the successive lead-lag days. When the sta-
tistical significance level � is set as 0.01, the criterion d�

equals 4 based on the obtained distribution in Figure 8. Here,



8 Y. Li et al.

Figure 6. Graphs of five successive lead-lag networks given in this example.

Figure 7. Graghs of five successive random lead-lag networks via one group of simulation.

Figure 8. Distribution of the successive lead-lag days via 500 groups
of simulations.

d� = 0.01 = 4 in our example means that, if and only if a
directed link between the same pair appears in at least four
successive real lead-lag networks shown in Figure 6, the
pairs connected by the link can be judged to possess a lead-
lag effect. As a result, the detected leader-follower pairs are
3 → 4, 5 → 5 and 8 → 7.

4.3. Results based on the detection method

Based on the data sets described above and ε in Equation
(2) being set as 20%, the distributions of the real dijs and
simulated dijs in the SSE (Shanghai Stock Exchange) are
obtained via the above proposed detection method and com-
bined in Figure 9, where different significance levels �s cause
different criterions d�s.

It is not hard to understand that a smaller significance
level will result in a larger criterion. To illustrate this point
more clearly, Figure 9 displays the directed networks formed
by these detected lead-lag pairs under different significance
levels. Essentially, the detected lead-lag pairs can be under-
stood as the origin of the heavy tail contained in the observed
power-law distribution displayed in Figure 5. Note that the
networks formed by these detected lead-lag pairs are different
from the daily real lead-lag networks or the daily random

Table 3. Network-based statistical indexes in SSE.

� 0.10 0.01 0.001

Node number 1574 1565 1389
Edge number 545574 171870 75080
Density 0.220 0.070 0.039
Diameter 1.692 2.258 3.123
Clustering coefficient 0.526 0.373 0.455
Ratio of triad 0.206 0.047 0.020
Ratio of reciprocity 0.526 0.652 0.483

Table 4. Network-based statistical indexes in SZSE.

� 0.10 0.01 0.001

Node number 2210 2209 2121
Edge number 1340975 391655 109948
Density 0.275 0.080 0.024
Diameter 1.603 2.039 2.868
Clustering coefficient 0.580 0.402 0.384
Ratio of triad 0.298 0.049 0.007
Ratio of reciprocity 0.550 0.551 0.344

lead-lag networks. In order to distinguish them, we call the
network formed by the detected lead-lag pairs by the name
“heavy-tailed network”. Intuitively, by comparing the three
displayed heavy-tailed networks, we find that their total num-
bers of nodes are quite similar although they are formed under
different significance levels, whereas the number of edges
decreases when � is smaller. Table 3 illustrates the above
findings and reports the other statistical indexes of the three
heavy-tailed networks obtained in the SSE. Similar results can
also be found in the SZSE (Shenzhen Stock Exchange), which
are shown in Figure 10 and Table 4.

In addition to the above findings, we also find that the
distribution of dij from real lead-lag networks is quite differ-
ent from that from the simulated random lead-lag networks,
which implies that the dynamics of lead-lag networks can-
not be formed purely from the random mechanism. The
distributions of dij from real lead-lag networks both satisfy
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Figure 9. The detection results in SSE.

Figure 10. The detection results in SZSE.
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a power-law distribution in the two targeted stock markets
whereas those from the simulated random lead-lag networks
both satisfy the exponential distribution.† Our work focuses
on their distinctions and detects the above-defined heavy-
tailed networks to highlight the features of the observed social
dynamics of real lead-lag networks. Recalling Figures 9 and
10 again, even if the significance level � is as small as 0.001,
there are also a large number of stock pairs meeting the lead-
lag effect and being detected in both stock markets. Besides,
the displayed heavy-tailed networks and their local enlarged
drawings show that intermediary nodes have larger degrees
than the other two types of nodes and become the cores of the
formed networks, noting that the node size is proportional to
its degree in our graphs. This finding essentially reveals that
the transmission structure widely exists in the formed heavy-
tailed networks and that many transmission paths share the
same middle nodes. This result is helpful not only to design
an empirical model to analyze the influencing factors that
affect the formation of the heavy-tailed networks obtained, but
also to understand the price fluctuation and risk transmission
patterns in the targeted stock markets.

As the adopted significance level � decreases, some
network-based indexes change very little, but others change
substantially. In both stock markets, the node number, the
clustering coefficient and the ratio of reciprocity are not sen-
sitive to the change in � whereas the edge number, the
network density and the ratio of the triad sharply decrease
and the network diameter significantly rises as � decreases.
In other words, there was a significant change in network
global indexes (such as the edge number, the ratio of triad, the
network density and diameter) and a tiny change in network
local indexes (such as the clustering coefficient). Besides, it
is an interesting finding that the total node number and the
ratio of reciprocity are almost unchanged under different sig-
nificance levels. All the above findings hint at the structural
pattern of the obtained heavy-tailed networks to some extent,
which benefits the design of the empirical analysis.

5. Empirical analysis: exploring the driving factors

As we have explained, the heavy-tailed network, consisting of
lead-lag pairs and their detected lead-lag links, act as the core
of the observed dynamics pattern of lead-lag networks. This
section will empirically demonstrate which driving factors
can significantly affect the formation of heavy-tailed net-
works and then reveal the origin of the observed power-law
distribution.

5.1. Empirical model

When assessing stocks or stock markets, we can usually think
of the following variables: earnings per share (EPS), turnover
rate (TR), market value (MV), region (REG) and industry

† Given the null hypothesis that the variables follow an exponential
distribution, the results of the statistical tests are 0.991 and 0.989
(p value), respectively, thus not rejecting the null hypothesis in both
markets.

(IND).‡ In this section, whether these variables affect the
formation of heavy-tailed networks will be examined. In fact,
some studies have explored the influence of one or several
variables mentioned above on the formation of stock networks
in stock network research. For example, Chordia and Swami-
nathan (2000) found that the trading volume is a significant
determinant of the lead-lag patterns observed in stock returns,
where the so-called trading volume is an index similar to the
turnover rate (TR) reflecting the degree of trading activity.
In another example, Kinnunen (2017) demonstrated that firm
size is a significant factor influencing the formation of a lead-
lag relationship. Besides, Scherbina and Schlusche (2018)
indicated that industry and size are not good predicators to
identify leader-follower pairs. However, we find that the con-
clusions of existing studies vary with the different research
objects and data; in addition, different from the definition of
stock networks in previous studies, this paper focuses on the
analysis of the heavy-tailed part of a power-law distribution
rather than the whole network. It is worth noting that a power-
law distribution is the core feature of the social dynamics of
the lead-lag network studied here. Due to the particularity of
the network analyzed in this article, the object of our study is
different from those mentioned above; however, it has a cer-
tain degree of inheritance regarding selecting the explanatory
variables of interest.

Furthermore, in view of the purpose of this paper, i.e. to
conduct dynamic modeling analysis on the formation of net-
work edges, the exponential random graph model (ERGM) is
chosen to explain the formation and disconnection of network
edges. The model covers not only the attitudes of individual
stocks as the exogenous variables, but also the network struc-
tures as the endogenous explanatory variables. Considering
the network structure effects in the model is the characteristic
that distinguishes the ERGM from the widely adopted logistic
regression model. Accordingly, the ERGM pays more atten-
tion to the overall perspective of dynamic network formation
rather than the micro perspective of edge changes. Analyzing
network formation with network structure variables as control
variables helps to identify the role of exogenous explanatory
variables more accurately. Specifically, similar to many lit-
eratures on the applications of the ERGM (Windzio 2018,
Krichene et al. 2019), the following commonly used network
structure variables are selected: reciprocity (REC), 2-path
(PA), transitional triads (TT) and cyclic triads (CT). The dia-
grams of the four network structure variables are shown in
Figure 11.

Based on the above explanation of exogenous explana-
tory variables and network structure variables, the specific
ERGM used for empirical analysis in this work is established
as follows:

pθ (G) = 1

κ(θ)
exp(θ1L(G) + θ2REC(G) + θ3PA(G)

+ θ4TT(G) + θ5CC(G) + θ6

∑
i<j

IS(INDi − INDj)

‡ Since there are many standards for the division of stocks by indus-
try, the standard chosen in this paper comes from the China Securities
Regulatory Commission (CSRC).
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(a) (b) (c) (d)

Figure 11. The selected variables of network structures.

+ θ7

∑
i<j

IS(REGi − REGj) + θ8

∑
i<j

|EPSi − EPSj|

+ θ9

∑
i

∑
j

gijEPSj + θ10

∑
j

∑
i

gijEPSi

+ θ11

∑
i<j

|TRi − TRj| + θ12

∑
i

∑
j

gijTRj

+ θ13

∑
j

∑
i

gijTRi + θ14

∑
i<j

|M Vi − M Vj|

+ θ15

∑
i

∑
j

gijM Vj + θ16

∑
j

∑
i

gijM Vi). (5)

Here, L(G) represents the total number of links contained in G
and is similar to the constant item in the classical linear regres-
sion; and REC(G), PA(G), TT(G) and CC(G) denote the four
network structure variables displayed in Figure 11. Therefore,
the first row of Equation (5) models the network structure
variables. Next, IS(x) is a sign function that is defined as
IS(x = 0) = 1 and IS(x �= 0) = 0, and thus, the second row
of Equation (5) tests whether the link between a pair of stocks
is more likely to form when the pair shares the same indus-
try or the same region. Then, the last three rows of Equation
(5) model the effects of the three concerned explanatory vari-
ables, i.e. earnings per share (EPS), turnover rate (TR) and
market value (MV), respectively. Taking the third row as an
example, the three items in this row, one by one, aim to
demonstrate how the difference in the EPSs between stock
pairs affects the formation of links and how the followers’ and
the leaders’ EPSs affect the formations of the directed links in
the observed network G. Meanwhile, the remaining two rows
can also be understood by following this example. Note that
κ(θ) is adopted for normalization and is not important for our
analysis. Fortunately, the package “statnet” in the R software
can analyze and fit the established ERGM, and then all the
results reported in the following section are obtained via the
R software.

5.2. Results and discussions

The data obtained for the empirical analysis come from
http://cndata1.csmar.com/ for the trading data and https://
www.wind.com.cn/ for the individual stock attributes. Recall-
ing that the lead-lag networks are analyzed year by year
in Section 3.2.1, the empirical study remains consistent and
conducts year-by-year analysis. Since some of the individ-
ual stock variables mentioned above are not collected on
an annual basis, some calculations and explanations are

necessary: annual earnings per share (EPS) can be collected
directly, annual turnover rate (TR) is the average of the daily
turnover rates for all trading days of the targeted year, and
the annual market value (MV) is calculated similar to the
annual TR. Besides, the industry and the region to which
one stock belongs do not frequently change. If there are
some changes, they will be updated in the corresponding
year.

By fitting the model shown in Equation (5), the empiri-
cal results of the two stock exchange markets from 2015 to
2019 are obtained and listed in Tables 5 and 6, respectively.
Comparing Tables 5 and 6, the results of the network structure
effects in the two markets and in different years are relatively
consistent. Specifically, the edge is similar to the constant
term that appears in the classical linear regression, reflecting
the level of the link density. Through a year-on-year com-
parison, it can be found that the coefficient of edge in the
two markets is larger in 2015, indicating that the link den-
sity of the targeted heavy-tail in this year is higher than those
in subsequent years.

The regression results on the network structure effects are
listed as below: (1) The coefficients of reciprocity are all sig-
nificantly positive in different years and in different markets,
indicating that the bidirectional links formed between stock
pairs are significantly greater than those in random networks.
This finding means that the underlying trading behavior of
investors makes the leader and the follower contained in one
stock pair transpose during one year’s time. (2) The coeffi-
cient of 2-path is either significantly negative or equals zero,
which means that the number of 2-path is either smaller than
that of a random network or not different from it. (3) The coef-
ficient of transitive triad is significantly positive, implying that
the transitive cluster formed by investor behaviors is one of
the driving factors for the formation of the lead-lag effect.
(4) Unlike the transitive triad, the coefficient of the cyclic
triad is significantly negative, meaning that the cyclic cluster
is not the driving factor that leads to the link formation with
the defined lead-lag effect. In essence, the network structure
variables reflect the investors’ potential behaviors difficult to
observe by partly uncovering the investors’ potential attention
process and the information transmission process implied in
the network structures.

Furthermore, Tables 5 and 6 also contain the individual
stock attitudes. Different from network structure variables, the
coefficients of these variables are not completely consistent in
different markets and in different years. However, it is worth
mentioning that the coefficient of turnover rate (TR) shows
a consistent result. Specifically, the coefficients of the vari-
able that reflect the heterogeneity of TR (i.e. |TRi − TRj|)
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Table 5. Empirical results in the market of SSE from 2015 to 2019.

Estimates (Standard errors)

Parameters 2015 2016 2017 2018 2019

Edge − 4.43 (0.02)*** − 6.92 (0.07)*** − 6.75 (0.04)*** − 6.69 (0.05)*** − 6.35 (0.04)***
Network structural effects

Reciprocity 1.40 (0.04)*** 4.69 (0.13)*** 4.21 (0.11)*** 3.25 (0.15)*** 2.88 (0.14)***
2-path − 0.03 (0.01)*** − 0.05 (0.01)*** − 0.04 (0.00)*** 0.00 (0.01) 0.02 (0.003)***
Transitive triads 0.01 (0.00)*** 0.72 (0.01)*** 0.49 (0.01)*** 1.21 (0.03)*** 0.66 (0.01)***
Cyclic triplets − 0.02 (0.00)*** − 1.06 (0.02)*** − 0.61 (0.02)*** − 1.17 (0.06)*** − 0.89 (0.02)***

Stock-relations effects
Homophily – REG 0.05(0.05) 0.19 (0.09)** 0.13 (0.08)* − 0.07 (0.08) − 0.01 (0.07)
Homophily – IND − 0.14 (0.04)*** 0.07 (0.07) 0.03 (0.06) 0.06 (0.05) − 0.02 (0.04)

Heterophily – EPS − 0.14 (0.02)*** − 0.03 (0.04) − 1.00 (0.92) 0.40 (1.06) − 0.02 (0.01)**
Receiver – EPS − 0.23 (0.02)*** 0.01 (0.04) 1.85 (0.84)** − 1.49 (1.04) − 0.10 (0.02)***
Sender – EPS 0.20 (0.01)*** 0.04 (0.04) 1.12 (0.88) − 0.63 (1.01) − 0.07 (0.02)***

Heterophily – TR − 0.50 (0.05)*** − 2.50 (0.20)*** − 2.86 (0.18)*** − 2.39 (0.17)*** − 1.38 (0.16)***
Receiver – TR 0.91 (0.06)*** 2.18 (0.18)*** 1.59 (0.14)*** 1.30 (0.15)*** 0.78 (0.15)***
Sender – TR 1.11 (0.03)*** 2.55 (0.18)*** 2.19 (0.16)*** 2.17 (0.16)*** 0.92 (0.13)***

Heterophily – MV − 4.05 (0.14)*** 10.60 (3.38) 3.30 (3.04) − 2.13 (1.01)** − 0.62 (1.31)
Receiver – MV 3.20 (0.15)*** − 11.79 (3.41) − 2.79 (2.98) 2.10 (0.97)** 0.82 (1.27)
Sender – MV 2.01 (0.12)*** − 11.71 (3.46) − 3.05 (2.98) 2.01 (0.97)** 1.03 (1.28)

Note. *, ** and *** denotes significant in the level of 0.1, 0.05 and 0.01, respectively.

Table 6. Empirical results in the market of SZSE from 2015 to 2019.

Estimates (Standard errors)

Parameters 2015 2016 2017 2018 2019

Edge − 5.24 (0.02)*** − 7.12 (0.06)*** − 6.80 (0.03)*** − 6.66 (0.04)*** − 6.36 (0.03)***
Network structural effects

Reciprocity 1.75 (0.42)*** 4.21 (0.11)*** 4.32 (0.08)*** 2.68 (0.11)*** 3.13 (0.09)***
2-path − 0.02 (0.00)*** − 0.05 (0.00)*** − 0.03 (0.00)*** 0.00 (0.00) 0.00 (0.00)
Transitive triads 0.01 (0.00)*** 0.45 (0.01)*** 0.43 (0.00)*** 1.06 (0.02)*** 0.64 (0.01)***
Cyclic triplets − 0.01 (0.00)*** − 0.46 (0.02)*** − 0.57 (0.01)*** − 0.96 (0.07)*** − 0.83 (0.02)***

Stock-relations effects
Homophily – REG 0.02 (0.05) − 0.03 (0.06) − 0.04 (0.05) − 0.04 (0.04) − 0.03 (0.04)
Homophily – IND − 0.01 (0.00)*** − 0.01 (0.05) 0.01 (0.04) 0.01 (0.03) − 0.05 (0.03)

Heterophily – EPS − 0.07 (0.02)*** − 0.08 (0.05)* − 0.08 (0.03)*** 0.01 (0.01) − 0.02 (0.01)**
Receiver – EPS − 0.02 (0.01)** − 0.10 (0.05)** 0.08 (0.03)*** − 0.01 (0.02) − 0.01 (0.01)
Sender – EPS 0.09 (0.04)** 0.03 (0.05) 0.05(0.03)* − 0.01 (0.12) 0.00 (0.01)

Heterophily – TR − 0.43 (0.03)*** − 1.62 (0.17)*** − 2.57 (0.14)*** − 1.86 (0.12)*** − 1.59 (0.11)***
Receiver – TR 1.32 (0.11)*** 2.04 (0.19)*** 1.71 (0.12)*** 0.60 (0.12)*** 1.19 (0.12)***
Sender – TR 0.81 (0.02)*** 2.56 (0.17)*** 2.45 (0.13)*** 2.20 (0.10)*** 1.78 (0.11)***

Heterophily – MV − 1.30 (0.35)*** − 1.22 (0.61)** − 1.09 (0.67)* 0.53 (0.63) − 0.02 (0.93)
Receiver – MV 1.45 (0.53)*** 1.27 (0.58)** 1.30 (0.61)*** − 0.88 (0.64) − 1.24 (0.96)
Sender – MV 0.87 (0.26)*** 0.88 (0.56)* 0.99 (0.67) 0.18 (0.62) 0.74 (0.88)

are significantly negative, demonstrating that a greater dif-
ference in the turnover rate between two stocks will lead to
a lower likelihood of forming a lead-lag link between them.
Furthermore, both coefficients are significantly positive from
both the sender’s perspective and the receiver’s perspective,
and thus, a stock with a high TR is more likely to estab-
lish a lead-lag link. By further comparing their coefficients
(i.e. sender-TR and receiver-TR), the likelihood of acting as a
leader is higher than that of acting as a follower. On the other
hand, industries and regions are not significant in most years
in the two stock markets, and thus, industries and regions
do not significantly affect the formation of lead-lag links in
most years. Furthermore, earnings per share (EPS) and market
value (MV) do not follow the same pattern in different mar-
kets and in different years, adding new findings to the related
literature.

6. Conclusions and future work

This paper focuses on studying the successive lead-lag phe-
nomenon of stock price movements and the driving factors
causing this observed phenomenon. First, the distribution of
the successive following days among all stock pairs is found
and validated to meet a power-law distribution in the two
selected stock markets-the Shanghai Stock Exchange and the
Shenzhen Stock Exchange. Note that the heavy tail is at the
heart of a power-law distribution and it acts as the key to
analyzing and identifying the social dynamics of the lead-lag
networks. Second, a rigorous definition is proposed to identify
the lead-lag effect according to the principle of statistical test,
and it is further adopted to detect the heavy tail of the observed
power-law distributions. Third, a series of empirical analy-
ses are conducted based on the ERGM and they help explain
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the origins of the observed power-law distribution. In the
empirical analysis, the above detected heavy-tailed network
is regarded as the dependent variable, and the network struc-
ture effects and the individual stock attributes are regarded as
the independent variables. Furthermore, the empirical analy-
sis indicates that among the four network structure variables
(i.e. reciprocity (REC), 2-path (PA), transitive triads (TT) and
cyclic triads (CT)), REC, TT and CT significantly and consis-
tently affect the formation of heavy-tailed networks in the two
markets throughout the selected years, reflecting some inher-
ent behavioral characteristics of investors. Besides, in terms
of individual stock attributes, the influence of the turnover rate
is consistent and significant in the two markets throughout the
selected years, the industry and the region have no signifi-
cant influence on the formation of the lead-lag effect, and the
influences of the other concerned individual stock attributes
are inconsistent in different markets and in different years.

We recommend that future work validates the model and
empirical findings in more stock markets. Moreover, the
observed power-law distribution can also be useful for design-
ing investment strategies in stock markets, because the price
fluctuation of the leader can effectively predict that of the fol-
lower in the next day. Finally, as a preliminary study, our
empirical study only validates some of the potential stock
attributes and several network structure effects, so in-depth
and rigorous empirical studies are still needed.
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