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Stock Options and Credit Default Swaps:

A Joint Framework for Valuation and Estimation

ABSTRACT

We propose a dynamically consistent framework that allows joint valuation and estimation of stock

options and credit default swaps written on the same reference company. We model default as controlled

by a Poisson process with a stochastic default arrival rate.When default occurs, the stock price drops

to zero. Prior to default, the stock price follows a continuous process with stochastic volatility. The

instantaneous default rate and instantaneous diffusion variance rate follow a bivariate continuous Markov

process, with its dynamics specified to capture the empirical evidence on stock option prices and credit

default swap spreads. Under this joint specification, we derive tractable pricing solutions for stock

options and credit default swaps. We estimate the joint dynamics using stock option prices and credit

default swap spreads for four of the most actively traded reference companies. The estimation highlights

the interaction between market risk (diffusion variance) and credit risk (default arrival) in pricing stock

options and credit default swaps. While the credit risk factor dominates credit spreads at long maturities,

the stock return volatility also enters credit spreads at short maturities due to positive co-movements

between the diffusion variance rate and the default arrivalrate. Furthermore, while the diffusion variance

rate influences the implied volatility uniformly across moneyness, the impact of the credit risk factor

becomes much larger on options at lower strikes. The impact of the credit risk factor on stock options

also increases with option maturity. For options maturing in six months, the contribution of the credit

risk factor to option pricing is comparable in magnitude to the contribution of the diffusion variance rate.

JEL Classification:C13; C51; G12; G13.

Keywords:Stock options; credit default swaps; default arrival rate;return variance dynamics; option pricing;

time-changed Lévy processes.
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Stock Options and Credit Default Swaps:

A Joint Framework for Valuation and Estimation

Markets for both stock options and credit derivatives have experienced dramatic growth in the past few

years. Along with the rapid growth, it has become increasingly clear to market participants that stock option

implied volatilities and credit default swap (CDS) spreadsare inherently linked. Many academic studies

have also empirically documented the positive link betweencredit spreads and stock volatility at both the

firm level and the aggregate level.1 Interestingly, this empirical relationship has been presaged by classical

asset pricing theory. According to the classical structural model of Merton (1974), corporate bond credit

spreads are functions of financial leverage and firm asset volatility, which both contribute to volatility in the

underlying company’s stock and hence to stock option implied volatilities.

Furthermore, when a company defaults, the company’s stock price inevitably drops by a sizeable amount.

As a result, the possibility of default on a corporate bond generates negative skewness in the risk-neutral

probability distribution of stock returns. This negative skewness is manifested in the relative pricing of

stock options across different strikes. When the Black and Scholes (1973) implied volatility is plotted

against some measure of moneyness at a fixed maturity, the slope of the plot is positively related to the

risk-neutral skewness of the stock return distribution. Dennis and Mayhew (2002) and Bakshi, Kapadia, and

Madan (2003) examine the negative skew of the implied volatility plot for individual stock options. Recent

empirical work, e.g., Cremers, Driessen, Maenhout, and Weinbaum (2004), shows that CDS spreads are

positively correlated with both stock option implied volatility levels and the steepness of the negative slope

of the implied volatility plot against moneyness.

In this paper, we propose a dynamically consistent framework that allows joint valuation and estimation

of stock options and credit default swaps written on the samereference company. We model company default

as controlled by a Poisson process with a stochastic arrivalrate. When default occurs, the stock price drops

to zero. Prior to default, we model the stock price by a continuous process with stochastic volatility. The

instantaneous default rate and instantaneous diffusion variance rate follow a bivariate continuous Markov
1Examples include Bevan and Garzarelli (2000), Pedrosa and Roll (1998), Collin-Dufresne, Goldstein, and Martin (2001),

Bangia, Diebold, Kronimus, Schagen, and Schuermann (2002), Capmbell and Taksler (2003), Altman, Brady, Resti, and Sironi
(2004), Bakshi, Madan, and Zhang (2004), Ericsson, Jacobs,and Oviedo-Helfenberger (2004), Hilscher (2004), Consigli (2004),
and Zhu, Zhang, and Zhou (2005).



process, with its joint dynamics specified to capture the empirical evidence on stock option prices and CDS

spreads.

Under this joint specification, we derive tractable pricingsolutions for stock options and credit default

swaps. We estimate the joint dynamics of the default rate andthe diffusion variance rate using stock op-

tion prices and CDS spreads for four actively traded companies. Our estimation shows that for all four

companies, the default rate is more persistent than the diffusion variance rate under both statistical and

risk-neutral measures. The statistical persistence difference suggests different degrees of predictability. The

risk-neutral difference suggests that the default rate hasa more long-lasting impact on the term structure of

option volatilities and CDS spreads than does the diffusionvariance.

The estimation also highlights the interaction between market risk (diffusion variance) and credit risk

(default arrival) in pricing stock options and credit default swaps. We find that while credit risk dominates

the CDS spreads at long maturities, diffusion variance can also affect CDS spreads at short maturities due to

positive co-movements between diffusion variance and default arrival. On the other hand, the default arrival

rate affects stock option pricing through both its correlation with the diffusion variance rate and its direct

impact on the risk-neutral drift of the return process. The impact of the diffusion variance rate on the implied

volatility is relatively uniform across different moneyness levels, but the impact of the default arrival rate

is mainly on options at low strikes. Furthermore, the impactof the credit risk factor on stock option prices

increases with the option maturity. For options maturing insix months, the contribution of the credit risk

factor to option pricing is comparable in magnitude to the contribution of the diffusion variance rate.

The positive empirical relation between CDS spreads and stock option implied volatilities has been

recognized only very recently in the academic community. Asa result, efforts to theoretically capture this

link are only in an embryonic stage. In a recent working paper, Hull, Nelken, and White (2004) link CDS

spreads and stock option prices by proposing a new implementation and estimation method for the classical

structural model of Merton (1974). As is well known, this early model is highly stylized as it assumes that

the only source of uncertainty is the firm’s asset value. As a result, stock option prices and CDS spreads

have changes that are perfectly correlated locally. Thus, the empirical observation that implied volatilities

and swap spreads sometimes move in opposite directions can only be accommodated by adding additional

sources of uncertainty to the model. In this paper, we assumethat prior to default, the stock price process
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is continuous. The drift and diffusion coefficients of this process are both stochastic as we assume that the

default arrival rate and diffusion variance rate obey a bivariate stochastic process. As a result, we are able

to capture the imperfect positive correlation between stock volatility and default risk. Thus, when compared

to efforts based on the structural model of Merton (1974), our contribution amounts to adding consistent,

inter-related, but separate dynamics to the relation between volatility and default. The CDS market and the

stock options market contain overlapping information on the market and credit risk of the company. Our

joint valuation and estimation framework exploits this overlapping informational structure to provide better

identification of the dynamics of the stock return variance and default arrival rate. The estimation results

highlight the inter-related and yet distinct impacts of thetwo risk factors on the two markets.

The rest of the paper is organized as follows. The next section proposes a joint valuation framework for

stock options and credit default swaps. Section 2 describesthe data set and summarizes the stylized evidence

that motivates our specification. Section 3 describes the joint estimation procedure. Section 4 presents the

results and discusses the implications. Section 5 concludes.

1. Joint Valuation of Stock Options and Credit Default Swaps

Consider a reference company which has positive probability of defaulting. LetPt denote the time-t stock

price for this company, which we assume falls to zero upon default. Let(Ω,F ,(F t)t≥0,Q) be a complete

stochastic basis and letQ be a risk-neutral probability measure.Prior to any default, the risk-neutral stock

price dynamics are given by:

dPt/Pt = (rt −qt + λt)dt+
√

vtdWP
t , (1)

wherert and qt denote the instantaneous interest rate and dividend yield respectively, which we assume

evolve deterministically over time. In (1),λ(t) denote the risk-neutral arrival rate of the default event and

vt denotes the instantaneous variance rate for the stock diffusion return component. Both processes evolve

stochastically over time. The stock priceP also evolves stochastically and is driven by standard Brownian

motionWP
t . The incorporation ofλt in the drift compensates for the possibility of a default, sothat the stock

price remains a martingale unconditionally under the risk-neutral measure. Thus, the drift and diffusion

coefficients of this pre-default stock price process are both stochastic.
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1.1. Joint dynamics of diffusion variance rate and default arrival rate

We model the joint dynamics of the default arrival rate and the diffusion return variance rate under the

risk-neutral probability measureQ as follows:

dvt = (θv−κvvt)dt+ σv
√

vtdWv
t , (2)

λt = βvt +zt , (3)

dzt = (θz−κzzt)dt+ σz
√

ztdWz
t , E

[
dWzdWP]

= E [dWzdWv] = 0 (4)

ρ = E
[
dWPdWv]/dt. (5)

The above specification is motivated by the following empirical evidence and economic justification:

• It is well-documented that stock return volatility is stochastic. We use a square-root process in equa-

tion (2) to model the dynamics of the instantaneous varianceof the diffusion return component.

• Cremers, Driessen, Maenhout, and Weinbaum (2004) find that implied volatilities covary with CDS

spreads. Our own empirical analysis finds similar evidence.Equation (3) captures the positive co-

movement via a positive loading coefficientβ between the default arrival rateλt and the diffusion

return variance ratevt .

• Although it is important to recognize the co-movement between the stock market and the credit mar-

ket, it is also important to accommodate the fact that the credit market can show movements inde-

pendent of the stock and stock options market. We usezt to capture this independent credit risk

component, with its dynamics controlled by an independent square-root process specified in (4).

• When the stock price falls, its return volatility often increases. A traditional explanation that dates

back to Black (1976) is the leverage effect. So long as the face value of debt is not adjusted, a falling

stock price increases the company’s leverage and hence its risk, which shows up in stock return

volatility.2 Equation (5) captures this phenomenon via a negative correlation coefficientρ between

diffusion shocks in return and diffusion shocks in return variance.
2Various other explanations have also been proposed in the literature, e.g., Haugen, Talmor, and Torous (1991), Campbell and

Hentschel (1992), Campbell and Kyle (1993), and Bekaert andWu (2000).
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1.2. Pricing stock options

Consider the time-t value of a European call optionc(Pt ,K,T) with strike priceK and expiry dateT.

The terminal payoff of the option is(PT −K)+ if the company has not defaulted by that time, and is zero

otherwise. The value of the call option can be written as,

c(Pt ,K,T) = Et

[
exp

(
−

Z T

t
(rs+ λs)ds

)
(PT −K)+

]
(6)

where the expectation operatorEt [·] is under the risk-neutral measureQ and conditional on the filtrationF t .

Given the deterministic interest rate assumption, we have,

c(Pt ,K,T) = B(t,T)Et

[
exp

(
−

Z T

t
λsds

)
(PT −K)+

]
, (7)

with B(t,T) denoting the time-t value of a default-free zero-coupon bond paying one dollar at its maturity

dateT. The expectation can be solved by inverting the following discounted generalized Fourier transform,

φ(u) ≡ Et

[
exp

(
−

Z T

t
λsds

)
eiu lnPT/Pt

]
, u∈ D ⊂ C, (8)

whereD denotes the subset of the complex plane under which the expectation is well-defined. Under

the dynamics specified in (1) to (5), the Fourier transform isexponential affine in the bivariate risk factor

xt ≡ [vt ,zt ]
⊤:

φ(u) = exp
(

iu(r(t,T)−q(t,T))τ−a(τ)−b(τ)⊤xt

)
, τ = T − t, (9)

wherer(t,T) andq(t,T) denote the continuously compounded spot interest rate and dividend yield at time

t and maturity dateT, respectively, and the time-homogeneous coefficients[a(τ),b(τ)] are given by,

a(τ) =
θv

σ2
v

[
2ln

(
1− ηv−κM

v

2ηv

(
1−e−ηvτ)

)
+

(
ηv−κM

v

)
τ
]

+
θz

σ2
z

[
2ln

(
1− ηz−κz

2ηz

(
1−e−ηzτ

))
+(ηz−κz)τ

]
, (10)

b(τ) =

[
2bv (1−e−ηvτ)

2ηv− (η−κM
v )(1−e−ηvτ)

,
2bz(1−e−ηzτ)

2ηz− (ηz−κz)(1−e−ηzτ)

]⊤
, (11)
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with κM
v = κv − iuσvρ, ηv =

√
(κM

v )
2
+2σ2

vbv, ηz =
√

(κz)
2 +2σ2

zbz, bv = (1− iu)β + 1
2

(
iu+u2

)
, and

bz = 1− iu. Appendix A provides details of the derivation. Givenφ(u), option prices can be obtained via

fast Fourier inversion (Carr and Wu (2004a)).

1.3. Pricing credit default swap spreads

For a credit default swap initiated at timet and with maturity dateT, we letS(t,T) denote the premium (the

“CDS spread”) paid by the buyer of default protection. Assuming continuous payments for simplicity, the

present value of the premium leg of the contract is,

Premium(t,T) = Et

[
S(t,T)

Z T

t
exp

(
−

Z s

t
(ru + λu)du

)
ds

]
. (12)

Assuming that the fractional loss given default is constantatw, the present value of the protection leg is,

Protection(t,T) = Et

[
w

Z T

t
λsexp

(
−

Z s

t
(ru + λu)du

)
ds

]
. (13)

Hence, by equating the present values of the two legs, we can solve for the CDS spread as,

S(t,T) =
Et

[
w

R T
t λsexp(−R s

t (ru + λu)du)ds
]

Et

[
R T

t exp(−R s
t (ru + λu)du)ds

] , (14)

which can be regarded as a weighted average of the expected default loss.

Under the dynamics specified in (2) to (5), we can solve for thepresent values of the two legs of the

CDS. The value of the premium leg is,

Premium(t,T) = S(t,T)

Z T

t
Et

[
exp

(
−

Z s

t
(ru + λu)du

)
ds

]

= S(t,T)

Z T

t
B(t,s)Et

[
exp

(
−

Z s

t
b⊤λ0xudu

)]
ds, (15)
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with bλ0 = [β,1]⊤. The affine dynamics for the bivariate risk factorsx and the linear loading functionbλ0

dictate that the present value of the premium leg is an exponential affine function of the state vector (Duffie,

Pan, and Singleton (2000)):

Premium(t,T) = S(t,T)

Z T

t
B(t,s)exp

(
−aλ(s− t)−bλ(s− t)⊤xt

)
ds, (16)

where the affine coefficients can be solved analytically:

aλ (τ) =
θv

σ2
v

[
2ln

(
1− ηv−κv

2ηv

(
1−e−ηvτ)

)
+(ηv−κv)τ

]

+
θz

σ2
z

[
2ln

(
1− ηz−κz

2ηz

(
1−e−ηzτ

))
+(ηz−κz)τ

]
, (17)

bλ (τ) =

[
2β(1−e−ηvτ)

2ηv− (η−κv) (1−e−ηvτ)
,

2(1−e−ηzτ)

2ηz− (ηz−κz) (1−e−ηzτ)

]⊤
, (18)

with ηv =

√
(κv)

2 +2σ2
vβ andηz =

√
(κz)

2 +2σ2
z.

The present value of the protection leg is,

Protection(t,T) = Et

[
w

Z T

t
B(t,s)λsexp

(
−

Z s

t
λudu

)
ds

]

= w
Z T

t
B(t,s)Et

[(
b⊤λ0xs

)
exp

(
−

Z s

t
b⊤λ0xudu

)]
ds, (19)

which also allows for an affine solution:

Protection(t,T) = w
Z T

t
B(t,s)

(
cλ(s− t)+dλ(s− t)⊤xt

)
exp

(
−aλ (s− t)−bλ (s− t)⊤ xt

)
ds, (20)

where the coefficients(aλ(τ),bλ(τ)) are the same as in (16), and the coefficients (cλ(τ),dλ(τ)) can also be

solved analytically by taking partial derivatives against(aλ(τ),bλ(τ)) with respect to maturityτ:

cλ(τ) = ∂aλ(τ)/∂τ, dλ(τ) = ∂bλ(τ)/∂τ. (21)
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Combining the solutions for the present values of the two legs in equations (15) and (20) leads to the

CDS spreadS(t,T). When we estimate the model, we discretize the above equation so as to accommodate

quarterly premium payments.

1.4. Market prices of risks and time-series dynamics

Our joint estimation identifies both the time-series dynamics and the risk-neutral dynamics of the bivariate

state vectorxt = [vt ,zt ]
⊤. To derive the time-series dynamics for the bivariate vector xt under the statistical

measureP, we assume that the market prices of risks are proportional to the corresponding risk level. Under

this assumption, the time-series dynamics are,

dvt =
(

θv−κP
vvt

)
dt+ σv

√
vtdWvP

t , dzt =
(

θz−κP
zzt

)
dt+ σz

√
ztdWzP

t , (22)

with κP
v = κv−σvγv andκP

z = κz−σzγv.

2. Data and Evidence

Both the stock option prices and the CDS spreads are functions of the two risk factorsxt = [vt ,zt ]
⊤, which

jointly determine the stock diffusion variance and the default arrival rate. Therefore, we can use data on

stock option prices and CDS spreads to infer the joint dynamics.

2.1. Data description

We estimate the model using CDS spreads and stock option prices on four reference companies. Bloomberg

provides CDS spread quotes from several broker dealers. We use quotes from different broker dealers in

order to cross-validate them. Then, we take the quotes on each series from the most reliable sources. We

choose four companies for which CDS quotes have both a long history and frequent updates. The four

companies are: Ford (F), General Motors (GM), Altria Group Inc (MO), and Duke Energy Corp (DUK).

For each company, we have CDS spread series at five fixed maturities of one, three, five, seven, and ten

years.
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The corresponding stock options data is from OptionMetrics. Exchange-traded options on individual

stocks are American-style and hence the price reflects an early exercise premium. OptionMetrics uses a bi-

nomial tree to back out the option implied volatility that explicitly accounts for this early exercise premium.

For each stock, OptionMetrics provides a standardized implied volatility surface at fixed Black-Scholes

forward deltas from 20 to 80 with a five-delta interval for both call and put options, and fixed option matu-

rities of 30, 60, and 91 days. OptionMetrics estimates the implied volatility surface via a kernel smoothing

approach whenever the underlying quotes are available and leave as missing values when there are not

enough quotes to make the smoothing estimation. Data at longer maturities are also available but only very

sparsely. Hence we only use the first three maturities. The implied volatility estimates from OptionMetrics

are often different from calls and puts at similar strikes, which is to be expected when options are American

and the Black Scholes model is not holding. Our interest is intesting the validity of our model for European

options and so we adopt a standard practice for estimating market prices of European options. The practice

is to take the average of the two implied volatilities at eachstrike and convert them into out-of-the-money

European option prices using the Black-Scholes formula.

To price the CDS contracts and to convert the implied volatility into option prices, we also need the

underlying interest rate curve. Again following standard industry practice, we use the interest rate curve

defined by the Eurodollar LIBOR and swap rates. We download LIBOR rates at maturities of one, two,

three, six, nine, and 12 months and swap rates at two, three, four, five, seven, and ten years. We use a

piece-wise constant forward function in bootstrapping thediscount rate curve.

2.2. Summary statistics

Our model estimation uses the common samples of the three data sets from January 2, 2002 to April 30,

2004. The data are available on a daily basis, but we estimatethe model using weekly-sampled data on

every Wednesday to avoid the impacts of weekday effects. Table 1 reports the summary statistics of the

CDS spreads on the four reference companies. The mean term structures of the spreads are relatively flat for

all four companies, but the standard deviations of the spreads for all four companies decline with increasing

maturities. The weekly autocorrelation estimates for the spreads range from 0.90 to 0.97, showing that the

CDS spreads are highly persistent.
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Table 2 reports the summary statistics of stock option implied volatilities at the three fixed maturities

and 13 fixed put-option deltas for each of the four reference companies. For each company and at each

option maturity, the implied volatilities at low strikes (low put deltas) are on average higher than the implied

volatilities at high strikes, generating a negatively sloped average implied volatility smirk across moneyness.

The standard deviations of the implied volatility series are also larger for out-of-the-money puts than for

out-of-the-money calls, but the difference is smaller thanthe difference in the mean estimates. The weekly

autocorrelation for the volatility series range from 0.69 to 0.93, indicating that the implied volatilities are

persistent, but less so than the CDS spreads.

Figure 1 plots the average implied volatility smirk at the three fixed maturities as a function of the put

option delta. For all four reference companies and for all three fixed maturities, the average implied volatility

smirk is negatively skewed, corresponding to a negatively skewed risk-neutral stock return distribution. The

three lines in each panel, which correspond to the three option maturities, stay closely to one another,

suggesting that the conditional risk-neutral distribution of the stock return retains similar shapes at the three

conditioning horizons. Generically, our model specification can generate the negative skewness from two

sources: (1) a positive probability of default (λ > 0) and (2) a negative correlation between the return

Brownian motion component and its instantaneous variance rate (ρ < 0).

[Figure 1 about here.]

2.3. Co-movements between option implied volatilities andcredit default swap spreads

Figure 2 overlays the time series of the CDS spreads (solid lines) with the daily time series of at-the-money

(50 delta) stock option implied volatilities at the three fixed option maturities (dashed lines) for the four

chosen reference companies. We observe apparent common movements for the two types of time series for

each company. The co-movements are the most obvious during periods of financial distress for the company,

as the two sets of time series both spike up.

[Figure 2 about here.]
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To quantify the co-movements, at each date we fit a second order polynomial on the three-month implied

volatilities across moneyness (d1),

IVt(d) = at +btd1 +ctd
2
1,

where the moneynessd1 is defined asd1 ≡ (lnP/K + (r − q)τ + IV 2τ/2)/(IV
√

τ). We use the intercept

estimateâ as a smoothed estimate for the at-the-money implied volatility (ATMVt ) at d1 = 0, and use the

normalized slope estimateSKEWt = b̂t/ât as a proxy for the risk-neutral skewness of the return distribution.

Then, we use the five-year CDS spread to proxy the credit spread (CDSt ) and run restricted and unrestricted

versions of the following regression:

CDSt = a+bATMVt +cSKEWt +et . (23)

Table 3 reports the parameter estimates,t-statistics, andR2 of the regressions for the four reference com-

panies. When the at-the-money volatility level is the only explanatory variable, the estimates for its slope

coefficient are positive and highly significant for all four companies. When the skewness measure is the

only explanatory variable, its slope coefficients are negative and highly significant for all four companies.

Thus, an increase in credit spreads is often associated withan increase in the option volatility level and a

steepening in the negative slope of the implied volatility smirk. When we incorporate both the volatility

level and the skewness measure as explanatory variables, the slope coefficient estimates on the skewness

measure are no longer statistically significant, suggesting that the link with the credit market is driven by

one source of risk. The R-squares of the joint regressions differ across different companies, as high as 83%

for Ford, but as low as 36% for Altria Group. The variations across different companies and the lowR2 esti-

mates in some instances suggest that although return variance and default arrival share common movements,

they also have their own independent movements. From a modeling perspective, it is important to capture

not only the common movements between the two markets, but also the idiosyncratic movements in each

market. Our bivariate risk dynamics in equations (2) to (5) can accommodate different degrees of common

and idiosyncratic movements.

Given the persistence of both CDS spreads and implied volatilities, we also study how the weekly

changes of one series is correlated with the weekly changes of the other series. Figure 3 plots the cross-

correlation estimates at different leads and lags between weekly changes in the five-year CDS spread and
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the three-month at-the-money implied volatility. The dash-dotted lines in each panel denote the 95 percent

confidence band. For all four reference companies, we identify significantly positive contemporaneous

correlations between the weekly changes of the two series, with the estimates ranging from 0.52 to 0.61.

The cross-correlation estimates at other leads and lags arelargely insignificant.

[Figure 3 about here.]

3. Joint Estimation of Return Variance and Default Arrival D ynamics

We estimate the bivariate risk dynamics jointly using both CDS spreads and stock options. We cast the

model into a state-space form and estimate the model using a quasi-maximum likelihood method.

In the state-space form, we regard the bivariate risk vectoras the unobservable states and specify the

state propagation equation using an Euler approximation ofthe time-series dynamics in equation (22):

xt =



 θv

θz



∆t +



 e−κP
v ∆t 0

0 e−κP
z ∆t



xt−1 +

√√√√√



 σ2
vvt−1∆t 0

0 σ2
zzt−1∆t



εt , (24)

whereε denotes an iid bivariate standard normal innovation and∆t = 7/365 denotes the sampling frequency.

We construct the measurement equations based on CDS spreadsand stock options, assuming additive,

normally-distributed measurement errors:

yt = h(xt ;Θ)+et , (25)

whereyt denotes the observed series andh(xt ;Θ) denotes the corresponding model value as a function of the

state vectorxt and model parametersΘ. Specifically, the measurement equation contains five CDS spread

series and 39 option series,

h(xt ;Θ) =



 S(xt , t + τs;Θ)

O(xt , t + τO,δ;Θ)



 ,
τs = 1,3,5,7,10 years

τO = 30,60,91 days;δ = 20,25, · · · ,80,
(26)
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whereS(xt , t + τs) denotes the model value of the CDS spreads at timet and maturityτs as a function of

the state vectorxt and model parametersΘ, O(xt , t +τO,δ;Θ) denotes the model value for out-of-the-money

options at timet, time-to-maturityτO, and deltaδ, as a function of the state vectorxt and model parameters

Θ. To deal with the predictable variation in option premia across strikes and maturity, we followed the

standard industry practice of dividing out-of-the-money option prices by their Black-Scholes vega. There

are missing values on both the CDS data and the implied volatility surface. Our estimation algorithm readily

handles missing observations. The termet in (25) denotes the measurement errors. We assume that the five

CDS series generate iid normal pricing errors with the same error varianceσ2
s. We also assume that the

pricing errors on all the options (scaled by their vega) are also iid normal with error varianceσ2
O.

When both the state propagation equation and the measurement equations are Gaussian and linear, the

Kalman (1960) filter generates efficient forecasts and updates on the conditional mean and covariance of

the state vector and the measurement series. In our application, the state propagation equation in (24) is

Gaussian and linear, but the measurement equation in (25) isnonlinear. We use the unscented Kalman filter

(Wan and van der Merwe (2001)) to handle the nonlinearity. The unscented Kalman filter approximates the

posterior state density using a set of deterministically chosen sample points (sigma points). These sample

points completely capture the true mean and covariance of the Gaussian state variables, and when propagated

through the nonlinear functions in the measurement equations, capture the posterior mean and covariance

of the CDS spreads and option prices accurately to the secondorder for any nonlinearity. Letyt+1 andVt+1

denote the time-t ex ante forecasts of time-(t +1) values of the measurement series and the covariance of the

measurement series, respectively obtained from the unscented Kalman filter. We construct the log-likelihood

value assuming normally distributed forecasting errors,

lt+1(Θ) = −1
2

log
∣∣Vt+1

∣∣− 1
2

(
(yt+1−yt+1)

⊤ (
Vt+1

)−1
(yt+1−yt+1)

)
. (27)

The model parameters are chosen to maximize the log likelihood of the data series,

Θ ≡ argmax
Θ
L (Θ,{yt}N

t=1), with L (Θ,{yt}N
t=1) =

N−1

∑
t=0

lt+1(Θ), (28)

whereN denotes the number of weeks in our sample.
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4. Joint Dynamics and Pricing of Return Variance and DefaultArrival Risks

First, we summarize the performance of our joint valuation model on CDS spreads and stock options on the

four reference companies. Then, from the structural parameter estimates, we discuss the joint dynamics and

pricing of the diffusion variance risk and default arrival risk.

4.1. Performance analysis

Table 4 reports the sample mean in the first panel and the standard deviation in the second panel of the

pricing errors on the stock options. We define pricing errorsas the difference between the implied volatility

quotes (in percentage points) and the corresponding model values. The mean pricing errors are fairly small

and show no obvious patterns across moneyness and maturities. The standard deviation ranges from one

to four percentages points. Comparing these estimates to the mean implied volatility estimates in Table 2

points to an average pricing error of less than ten percent. The last panel of the table reports the explained

variation, defined as one minus the variance of the pricing errors over the variance of the original implied

volatility series. The explained variations are over 90 percent for most series, showing that the model is

relatively successful in capturing the behavior of stock options on all four companies.

Table 5 reports the sample mean and standard deviation of thepricing errors as well as the explained

variation on the CDS spreads. The pricing errors are larger on the swap spreads. The explained variations

are over 80 percent for Ford and Duke Energy, but the model’s performance is relatively poor for General

Motors and Altria Group. The model explains over 50 percent of variation in the CDS spreads on General

Motors, and just about 30 percent on Altria Group.

Inspecting the time series plots in Figure 2, we observe thatfor General Motors, the five CDS spread

series diverge dramatically after January 2003 to generatea very steep term structure from a virtually flat

term structure before 2003. This dramatic term structure change either comes from economic forces or from

the mere fact that there was more frequent quote updating in the second half of the data. Irrespective of the

underlying reasons, our two-factor model seems to have difficulties fitting the whole term structure of CDS

spreads and the options data. The model performs well on all the options series, and also reasonably well on

short-term CDS spreads, but it performs poorly on the long-term CDS spreads. For Altria Group, the CDS

14



quotes are not updated as frequently before 2003, whereas the options data are actively quoted and traded.

It is potentially due to this difference that the model parameters are geared to price the options market better

than the CDS spreads.

4.2. The joint dynamics of return variance and default arrival rates

Table 6 reports the maximum likelihood estimates andt-statistics of the structural parameters that control

the joint dynamics of the diffusion variance rate and the default arrival rate. The joint dynamics differ across

different companies. Nevertheless, several common features emerge from the estimates.

First, the estimates for the risk-neutral mean-reverting coefficients (κv,κz) and their statistical counter-

parts (κP
v ,κP

z ) show that the default arrival rate is more persistent than the diffusion variance rate under both

the risk-neutral measureQ and the statistical measureP. The difference in statistical persistence suggests

that the diffusion return variance rates are strongly mean-reverting and hence predictable, but it is difficult to

predict changes in the independent credit risk factor basedon its past values. The difference in risk-neutral

persistence dictates that the two factors have different impacts across the term structure of options and CDS

spreads. Shocks on the diffusion variance rate affect the short-term options and CDS spreads, but dissipate

quickly as the option and CDS maturity increases. Shocks on the more persistent credit risk factor last

longer across the term structure of options and credit spreads.

For each risk factor, the difference in persistence under the two probability measures defines the market

price of that factor’s risk:

γv = (κv−κP
v )/σv, γz = (κz−κP

z )/σz. (29)

We compute the market prices(γv,γz) based on the parameter estimates and report them in the bottom panel

of Table 6. The estimates for all four companies show positive market price for the diffusion variance risk,

but negative market price for the independent credit risk.

Several studies, e.g., Bakshi and Kapadia (2003a,b) and Carr and Wu (2004b), use stock and stock index

options and the underlying time series returns to study the total return variance risk premia. They find that

the risk premia are negative for some stocks, and highly negative for stock indexes. Our model decomposes

the total risk on an individual stock into two components: risk in the diffusion variance rate and risk in the
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default arrival rate. By using both the CDS data and stock options data, we are able to separate the two

sources of risks and identify their respective market prices. Our estimation suggests that for the four stocks,

negative risk premia only come from the default arrival rate, but not from the diffusion variance rate.

Under our specification, market prices not only dictate the persistence difference of the risk factors

under the two measures, but also create differences in the long-run means of the risk factors under the two

measures. In particular, the statistical mean and the risk-neutral mean of the default arrival rate are given by,

EP[λ] = EP[βv+z] = β(κP
v )−1θv +(κP

z )−1θz, (30)

EQ[λ] = EQ[βv+z] = β(κv)
−1θv +(κz)

−1θz. (31)

The bottom panel of Table 6 also reports the two mean estimates based on the parameter estimates. The

mean default arrival rate is much lower under the statistical measureP than under the risk-neutralQ for all

four companies. These estimates are consistent with the empirical findings in the corporate bond literature

that the historical average default probabilities are muchlower than those implied from the corporate bond

credit spreads.3

If we define the credit spread at a maturityτ as the difference between the continuously compounded

spot rate on a reference company and the corresponding spot rate in the benchmark Eurodollar market, this

spread is affine in the two risk factors under our model specification,

CS(t,τ) =

[
aλ(τ)

τ

]
+

[
bλ(τ)

τ

]⊤
xt , (32)

where the solutions toaλ(τ) andbλ(τ) are given in equations (17) and (18). Hence,bλ(τ)/τ measures the

contemporaneous response of the credit spread term structure to unit shocks on the two risk factors. Figure 4

plots this response as a function of the credit spread maturity. The solid lines denote the response to the

independent credit risk factorz and the dashed lines denote the response to the diffusion variance factor

v. As the time to maturity approaches zero, the loading coefficient bλ(τ)/τ converges to the instantaneous

coefficientbλ0, which is normalized to unity for the credit risk factorz and isβ for the diffusion variance

ratev. The decay rate due to increases in time to maturity are controlled by the risk-neutral persistence of

3See, for example, Huang and Huang (2003), Eom, Helwege, and Huang (2004), Elton, Gruber, Agrawal, and Mann (2001),
and Collin-Dufresne, Goldstein, and Helwege (2003).
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the two risk factors. The higher persistence inz dictates that its impact declines more slowly as maturity

increases than does the impact of the more transient factorv.

[Figure 4 about here.]

Another common finding among the four reference companies isthat the default arrival rates all covary

positively with the diffusion variance rate, as the estimates for the loading coefficientβ are all positive.

Furthermore, for all four companies, the estimates for the instantaneous correlation between stock return

and return varianceρ are negative, consistent with the classic leverage effect.

Finally, the literature has often found it difficult to separately identify the recovery rate and the default ar-

rival rate using credit spread data alone (Houweling and Vorst (2005), Hull and White (2000), and Longstaff,

Mithal, and Neis (2005)). As a result, researchers often assume a fixed recovery rate, usually between 30

to 50 percent, instead of estimating it along with other model parameters. By exploiting the overlapping

information from the stock options market and the CDS market, we are able to separately identify the re-

covery rate(1−w) and the default arrival rate dynamics with high statisticalsignificance. Our recovery

rate estimates are between 47 and 81 percent, higher than thenormally assumed values. Nevertheless, the

estimates are in line with the high actual recovery rates during recent years reported in Altman (2006). They

are also similar to the average recovery estimates by Das andHanouna (2006) using corporate CDS spreads

and sovereign recovery rate estimates by Pan and Singleton (2005) based on sovereign CDS term structures.

Figure 5 plots the extracted time series on the variance rate(solid line) and the default arrival rate (dashed

line), with scales on the left and right hand sides of they-axis, respectively. The extracted time series show

co-movements that match the time series plots of the CDS spreads and implied volatilities in Figure 2. The

plots for all four companies show a spike for both the variance rate and the default arrival rate in late 2002,

a reflection of the financial stress during that period.

[Figure 5 about here.]
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4.3. The term structure of credit default swap spreads

Given the model parameter estimates in Table 6, we can compute the term structures of the CDS spreads

at different levels of the risk factors(v,z). In Figure 6, we plot the model-implied mean term structure of

the CDS spreads in solid lines, where we set the risk levels totheir respective sample averages. The two

dashed lines in each panel are constructed by setting the diffusion variance ratev to its sample mean and the

independent credit risk factor to one standard deviation away from its sample mean. The two dotted lines

in each panel reflect the impact of one standard deviation movements of the diffusion variance rate while

holding the independent credit risk factor to its sample mean.

[Figure 6 about here.]

The estimated model parameters on the four companies generate different mean term structures on the

CDS spreads. Nevertheless, the impacts of the two risk factors show similar patterns. First, a one standard

deviation move of the independent credit risk factor has a much larger impact on the CDS spreads than a

one standard deviation move of the diffusion variance rate,supporting the hypothesis that the CDS market

is mainly a market for credit risk. Furthermore, the impact of the diffusion variance rate is mainly at short

maturities. Its impact declines rapidly as maturity increases. In contrast, the impact of the independent

credit risk factor is much more persistent.

4.4. The implied volatility smirk and term structure

To understand how the two risk factors contribute to the pricing of stock options, we compute and plot

the one-month implied volatility smirks across different moneyness in Figures 7 at different risk levels. In

computing the option values and constructing the implied volatility smirks, we assume zero interest rates

and dividend yields, and define the moneyness as ln(K/S)/
√

vτ, which can be approximately interpreted as

the number of standard deviations that log spot is below log strike. The solid lines are the mean implied

volatility smirks evaluated at the sample means of the two risk factors. The two dashed lines in each panel

are generated with the diffusion variance rate at its samplemean and the independent credit risk factor one

standard deviation away from its sample mean. Hence, they capture the impact of shocks in the independent
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credit risk factor. The two dotted lines in each panel are generated by setting the independent credit risk

factor at its sample mean and the diffusion variance rate at one standard deviation away from its sample

mean. Hence, the dotted lines capture the impact of shocks inthe diffusion variance rate.

[Figure 7 about here.]

The implied volatility smirks show similar patterns acrossthe four companies. Furthermore, variations

in the diffusion variance rate level lead to relatively uniform shifts in the implied volatility smirk across

moneyness. In contrast, the impact of the independent credit risk factor is mainly at low strikes. The impact

of the credit risk factor on far out-of-the-money call option implied volatilities (at high strikes) is negligible.

To see how the impact changes at different maturities, we also plot in Figure 8 the corresponding implied

volatility smirk for six-month options. As for the one-month implied volatility smirk, the impacts of the

diffusion variance rate (dotted lines) are relatively uniform across all moneyness levels, whereas the impacts

of the independent credit risk factor (dotted lines) are stronger at lower strikes. Comparing Figures 7 and

8 also brings out visible differences: The impact of the independent credit risk factor is larger at longer

maturities.

[Figure 8 about here.]

Figure 9 plots the term structure of the at-the-money implied volatilities at different risk levels. Again,

we use the solid line to denote the mean term structure, the dashed lines to capture the impact of one

standard deviation moves on the independent credit risk factor, and the dotted lines to capture the impact

of the diffusion variance rate. At short option maturities,we find that for all four companies, the impact of

the diffusion variance rate is much larger than the impact ofthe independent credit risk factor. However, as

maturity increases, the influence of the diffusion variancerate declines, whereas the influence of the credit

risk factor increases. For six-month options on GM, the impacts of the two risk factors become comparable

in magnitude.

[Figure 9 about here.]
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5. Summary and Conclusions

Based on documented evidence on the joint movements betweenCDS spreads and stock option implied

volatilities, we propose a dynamically consistent framework for the joint valuation and estimation of stock

options and CDS spreads written on the same reference company. We model the possible default of a

company by a Poisson process with stochastic arrival rate, and we assume that the stock price falls to

zero upon default. We model the pre-default stock price as following a continuous process with stochastic

volatility. We assume that the default arrival rate and diffusion variance rate follow a bivariate process

with dynamic interactions that match the empirical evidence linking stock option implied volatilities and

CDS spreads. Importantly, our dynamic specification allowsboth common movements and independent

variations between the two markets.

Under this joint specification, we derive tractable pricingsolutions for stock options and credit default

swaps. We then estimate the joint dynamics of the diffusion variance rate and the default arrival rate using

data on stock option implied volatilities and CDS spreads for four of the most actively traded reference com-

panies. Estimation of the model parameters shows that the default arrival rate is much more persistent than

the diffusion variance rate under both the statistical measure and the risk-neutral measure. The statistical

persistence difference suggests different degrees of predictability. The risk-neutral difference in persistence

suggests that the default arrival rate has a more long-lasting impact on the term structure of option volatilities

and CDS spreads than does the diffusion variance.

The estimation also highlights the interaction between market and credit risk in pricing stock options

and credit default swaps. We find that the independent creditrisk factor dominates CDS spreads at long

maturities, but stock return volatility can also affect CDSspreads at short maturities, due to positive co-

movements between diffusion variance and default arrival.On the other hand, the default arrival rate affects

stock option pricing through both its correlation with the diffusion variance rate and its direct effect on the

risk-neutral drift of the return process. We find that the impact of the diffusion variance rate on the implied

volatility is relatively uniform across different moneyness levels, while the impact of the credit risk factor

is mainly on options at low strikes. Furthermore, the impactof the credit risk factor on stock options prices

increases with the option maturity. When the option has about six months to maturity, the contribution of the
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credit risk factor to option pricing is comparable in magnitude to the contribution of the diffusion variance

rate.

We conclude that one can learn more about the stock options and the CDS market by developing a

model that integrates both markets, rather than having separate models for each market. In particular, one

can identify the recovery rate on the bond insured by CDS muchmore effectively by adjoining stock option

prices to CDS data.
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Appendix. Generalized Fourier transform of stock returns

To derive the generalized Fourier transform:

φ(u) ≡ Et

[
exp

(
−

Z T

t
λsds

)
eiu lnPT/Pt

]
, u∈ D ⊂ C, (A1)

we use the language of stochastic time change of Carr and Wu (2004a) and define

T t ≡
Z T

t
vsds, T z

t ≡
Z T

t
zsds, T λ

t ≡
Z T

t
λsds= T z

t + βT t .

Then, conditional on no default during the time horizon[t,T], with τ = T − t, we can write the log stock return as

ln(PT/Pt) = (r(t,T)−q(t,T))τ+ T λ
t +WP

T t
− 1

2
T t , (A2)

wherer(t,T) andq(t,T) denote the continuously compounded spot interest rates anddividend yields of the relevant

maturity.

The discounted generalized Fourier transform becomes,

φ(u) = Et

[
exp

(
−T λ

t + iu(r(t,T)−q(t,T))τ+ iuT λ
t + iuWP

T t
− 1

2
iuT t

)]

= Et

[
exp

(
iuWP
T t

+
1
2

u2T t

)
exp

(
−T λ

t + iu(r(t,T)−q(t,T))τ+ iuT λ
t − 1

2
iuT t −

1
2

u2T t

)]

= exp(iu(r(t,T)−q(t,T))τ)EM
t

[
exp

(
−(1− iu)T λ

t − 1
2

(
iu+u2)T t

)]

= exp(iu(r(t,T)−q(t,T))τ)EM
t

[
exp

(
−(1− iu)T z

t −
(

(1− iu)β +
1
2

(
iu+u2)

)
T t

)]
,

where the new measureM is defined by

dM

dQ

∣∣∣∣
t
= exp

(
iuWP
T t

+
1
2

u2T t

)
,

under which the drift of the two dynamic processes change to:

µM
v = θv− (κv− iuσvρ)v(t) = θv−κM

v v(t) ,

µM
z = θz−κzz(t) .
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We have

φ(u) = exp(iu(r(t,T)−q(t,T))τ)EM
t

[
exp

(
−

Z T

t
b⊤0 xsds

)]
,

with xt = [vt ,zt ]
⊤, b0 = [bv,bz]

⊤, bv = (1− iu)β + 1
2

(
iu+u2

)
, andbz = 1− iu.

Since the risk factorsx follow affine dynamics, the solution is exponential affine inxt ,

φ(u) = exp(iu(r(t,T)−q(t,T))τ)exp(−a(τ)−b(τ)⊤xt),

where the coefficients can be solved analytically as in (10) and (11).
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Table 1
Summary Statistics on credit default swap spreads
Entries report the sample estimates of the mean, standard deviation, and weekly autocorrelation on the credit
default swap spreads (in percentages) at five fixed maturities for each of the four reference companies. The
statistics are based on weekly sampled data from January 2, 2002 to April 28, 2004.

Maturity 1 3 5 7 10

Mean:
F 2.19 2.89 2.97 2.95 2.87
GM 1.51 2.03 2.19 2.28 2.15
MO 1.79 1.78 1.75 1.69 1.79
DUK 2.31 2.14 1.99 1.92 1.27

Standard Deviation:
F 1.31 1.38 1.16 1.06 0.96
GM 0.89 0.82 0.72 0.69 0.67
MO 1.15 0.84 0.72 0.62 0.32
DUK 1.93 1.60 1.31 1.17 0.31

Autocorrelation:
F 0.97 0.97 0.96 0.95 0.95
GM 0.96 0.95 0.94 0.92 0.93
MO 0.91 0.92 0.92 0.90 0.94
DUK 0.96 0.97 0.96 0.96 0.96
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Table 2
Summary statistics on stock option impled volatilities
Entries report the sample estimates of the mean, standard deviation, and weekly autocorrelation on the
implied volatilities (in percentages) at 13 fixed deltas andthree fixed maturities for four reference companies.
The statistics are based on weekly sampled data from January2, 2002 to April 28, 2004.

Delta 20 25 30 35 40 45 50 55 60 65 70 75 80

Mean:
F 1m 50.07 49.09 48.02 46.82 45.84 44.74 43.68 43.12 42.52 42.25 41.95 41.98 42.28
F 2m 50.49 48.87 47.45 46.18 45.19 44.14 43.19 42.62 42.13 41.63 41.45 41.47 41.67
F 3m 49.98 47.97 46.64 45.46 44.53 43.61 42.73 42.14 41.46 40.93 40.63 40.46 40.53
GM 1m 40.87 39.39 38.16 37.14 36.33 35.60 34.95 34.42 33.96 33.54 33.19 32.94 32.95
GM 2m 41.45 39.92 38.64 37.49 36.51 35.70 34.97 34.35 33.81 33.29 32.81 32.41 32.17
GM 3m 41.58 39.84 38.46 37.29 36.24 35.34 34.58 33.92 33.31 32.71 32.14 31.64 31.27
MO 1m 33.73 32.07 30.84 29.89 29.24 28.69 28.36 28.06 27.74 27.50 27.42 27.55 28.07
MO 2m 33.23 31.79 30.71 29.85 29.17 28.63 28.21 27.81 27.42 27.09 26.86 26.78 26.91
MO 3m 33.09 31.78 30.80 29.97 29.25 28.63 28.12 27.66 27.24 26.85 26.50 26.23 26.04
DUK 1m 46.40 44.28 42.65 41.37 39.94 38.66 37.67 37.04 36.56 36.12 35.94 35.79 36.14
DUK 2m 46.09 43.96 42.26 40.85 39.48 38.22 37.25 36.58 35.94 35.30 34.69 34.30 34.38
DUK 3m 44.97 43.08 41.42 39.94 38.65 37.39 36.42 35.70 34.92 34.17 33.46 32.97 32.80

Standard Deviation:
F 1m 15.93 15.29 14.71 14.31 13.88 13.40 12.95 12.39 11.90 11.72 11.47 11.17 10.59
F 2m 15.55 15.03 14.39 13.57 12.97 12.40 11.86 11.64 11.37 10.62 10.33 10.15 10.03
F 3m 15.24 14.41 13.69 12.85 12.27 11.79 11.31 11.14 10.63 10.04 9.75 9.49 9.16
GM 1m 15.37 14.64 13.95 13.39 12.86 12.23 11.68 11.26 10.83 10.39 10.00 9.61 9.20
GM 2m 14.60 13.88 13.14 12.51 11.95 11.35 10.79 10.30 9.85 9.46 9.04 8.61 8.14
GM 3m 13.97 13.16 12.37 11.68 11.08 10.51 9.98 9.49 9.05 8.63 8.20 7.76 7.29
MO 1m 10.99 10.38 9.96 9.62 9.25 8.98 8.71 8.46 8.18 7.93 7.77 7.70 7.74
MO 2m 9.65 9.10 8.71 8.39 8.07 7.82 7.60 7.36 7.12 6.95 6.81 6.66 6.52
MO 3m 9.18 8.65 8.20 7.85 7.57 7.33 7.11 6.89 6.69 6.56 6.42 6.26 6.13
DUK 1m 19.25 18.36 17.76 17.05 16.44 15.82 15.20 14.65 14.23 13.91 13.47 13.04 12.54
DUK 2m 17.43 16.52 15.94 15.36 14.72 14.06 13.47 12.94 12.55 12.15 11.64 11.16 10.64
DUK 3m 16.54 15.61 14.80 14.16 13.50 12.86 12.29 11.77 11.38 10.96 10.50 10.05 9.63

Autocorrelation:
F 1m 0.83 0.86 0.87 0.89 0.87 0.84 0.84 0.85 0.84 0.85 0.85 0.850.87
F 2m 0.89 0.87 0.88 0.91 0.88 0.86 0.87 0.86 0.88 0.90 0.91 0.910.90
F 3m 0.93 0.91 0.91 0.94 0.91 0.89 0.89 0.89 0.91 0.93 0.92 0.910.91
GM 1m 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.90
GM 2m 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.93 0.92
GM 3m 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.94
MO 1m 0.78 0.78 0.79 0.80 0.81 0.82 0.82 0.81 0.81 0.81 0.80 0.76 0.69
MO 2m 0.84 0.84 0.85 0.85 0.86 0.86 0.86 0.86 0.87 0.87 0.86 0.84 0.80
MO 3m 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.88
DUK 1m 0.90 0.90 0.90 0.89 0.90 0.90 0.91 0.91 0.90 0.90 0.89 0.89 0.88
DUK 2m 0.93 0.93 0.93 0.92 0.92 0.93 0.93 0.92 0.92 0.91 0.91 0.91 0.91
DUK 3m 0.95 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93 0.93
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Table 3
Regressing CDS spreads on stock option implied volatility levels and skews
Entries report the parameter estimates,t-statistics (in parentheses), andR2 for different versions of the
following regressions on four reference companies:

CDSt = a+bATMVt +cSKEWt +et ,

whereCDSt denotes the five-year credit default swap spreads in percentage points,ATMVt denotes a
smoothed estimate of the three-month at-the-money impliedvolatility in percentage points, andSKEWt

denotes a normalized slope estimate on the implied volatility skew against moneyness. Data are weekly
from January 2, 2002 to April 28, 2004. To compute thet-statistics, we cast the regression into a GMM
framework, and estimate the covariance matrix following Newey and West (1987) with four lags.

Companies a b c R2

F -0.997 ( -2.786 ) 0.092 ( 10.62 ) — — 0.82
GM 0.267 ( 1.139 ) 0.055 ( 9.46 ) — — 0.58
MO 0.088 ( 0.242 ) 0.059 ( 3.98 ) — — 0.34
DUK -1.231 ( -5.391 ) 0.088 ( 10.63 ) — — 0.69

F 0.996 ( 4.796 ) — — -15.989 ( -8.03 ) 0.53
GM 0.900 ( 3.672 ) — — -7.988 ( -5.75 ) 0.46
MO 0.978 ( 3.282 ) — — -5.465 ( -2.43 ) 0.15
DUK -0.055 ( -0.143 ) — — -10.795 ( -4.27 ) 0.30

F -0.928 ( -2.523 ) 0.083 ( 6.44 ) -2.584 ( -1.30 ) 0.83
GM 0.289 ( 1.255 ) 0.049 ( 4.68 ) -1.173 ( -0.65 ) 0.59
MO -0.060 ( -0.156 ) 0.052 ( 3.71 ) -2.491 ( -1.55 ) 0.36
DUK -1.226 ( -5.194 ) 0.088 ( 7.09 ) 0.081 ( 0.04 ) 0.69
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Table 4
Summary statistics on the pricing errors in stock option impled volatilities
Entries report the sample mean and standard deviation of thepricing errors in stock option implied volatil-
ities, defined as the difference between observations and model-implied values in percentage points, at 13
fixed deltas and three fixed maturities for four reference companies. The last panel reports the explained
variation, defined as one minus the ratio of the pricing errorvariance to the variance of the original implied
volatility series. The statistics are based on weekly sampled data from January 2, 2002 to April 28, 2004.

Delta 20 25 30 35 40 45 50 55 60 65 70 75 80

Mean:
F 1m -0.26 0.68 0.86 0.75 0.60 0.15 -0.36 -0.83 -0.86 -0.90 -0.91 -0.71 -0.43
F 2m -1.05 -0.07 0.41 0.57 0.67 0.47 0.16 0.09 -0.04 -0.32 -0.37 -0.36 -0.31
F 3m -1.87 -0.91 -0.10 0.35 0.67 0.71 0.55 0.52 0.22 -0.09 -0.29 -0.50 -0.66
GM 1m 0.01 0.30 0.32 0.25 0.16 0.03 -0.12 -0.22 -0.31 -0.40 -0.45 -0.43 -0.18
GM 2m -0.74 0.02 0.40 0.51 0.51 0.49 0.42 0.35 0.29 0.18 0.05 -0.04 -0.01
GM 3m -1.56 -0.66 -0.13 0.14 0.23 0.24 0.23 0.21 0.13 0.01 -0.16 -0.31 -0.38
MO 1m 0.67 0.48 0.24 0.00 -0.11 -0.23 -0.21 -0.21 -0.28 -0.32 -0.22 0.05 0.66
MO 2m -0.70 -0.30 -0.10 -0.02 0.02 0.05 0.09 0.06 -0.02 -0.10 -0.13 -0.08 0.13
MO 3m -1.38 -0.63 -0.16 0.11 0.22 0.27 0.28 0.24 0.15 0.03 -0.12 -0.25 -0.35
DUK 1m -0.53 -0.49 -0.45 -0.38 -0.65 -0.96 -1.10 -1.01 -0.85 -0.73 -0.46 -0.25 0.33
DUK 2m -1.05 -0.55 -0.19 0.08 0.10 0.02 0.05 0.25 0.33 0.29 0.14 0.08 0.35
DUK 3m -2.02 -1.11 -0.56 -0.24 -0.03 -0.04 0.05 0.23 0.21 0.08-0.14 -0.28 -0.22

Standard Deviation:
F 1m 3.92 3.87 3.60 3.74 3.57 3.30 2.93 2.76 2.65 2.57 2.53 2.452.73
F 2m 2.52 2.52 2.50 2.66 2.57 2.37 2.00 1.92 1.60 1.27 1.30 1.391.84
F 3m 1.90 1.88 1.87 2.00 2.08 2.03 1.88 1.81 1.60 1.54 1.56 1.581.72
GM 1m 1.76 1.77 1.68 1.61 1.47 1.20 0.98 0.85 0.76 0.84 0.95 1.14 1.63
GM 2m 1.25 0.99 1.08 1.16 1.17 1.06 0.96 0.89 0.87 0.90 0.95 1.12 1.40
GM 3m 1.37 0.66 0.69 0.87 1.00 1.04 1.06 1.08 1.07 1.07 1.13 1.23 1.40
MO 1m 2.57 2.37 2.14 2.01 1.84 1.56 1.36 1.30 1.19 1.02 1.18 1.72 2.65
MO 2m 1.39 1.27 1.17 1.11 1.08 1.02 1.01 1.07 1.09 1.09 1.14 1.41 1.82
MO 3m 1.08 0.93 0.94 0.97 1.07 1.10 1.14 1.19 1.22 1.23 1.24 1.28 1.38
DUK 1m 3.48 3.26 3.33 3.26 3.25 2.98 2.56 2.58 2.47 2.37 2.71 2.81 2.90
DUK 2m 2.86 2.45 2.29 2.19 2.04 1.87 1.62 1.49 1.54 1.58 1.66 1.81 2.20
DUK 3m 2.72 2.46 2.25 2.18 2.08 1.96 1.95 1.88 1.78 1.77 1.76 1.75 1.89

Explained Variation:
F 1m 0.94 0.94 0.94 0.93 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.950.93
F 2m 0.97 0.97 0.97 0.96 0.96 0.96 0.97 0.97 0.98 0.99 0.98 0.980.97
F 3m 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.970.96
GM 1m 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.97
GM 2m 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97
GM 3m 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.96
MO 1m 0.95 0.95 0.95 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.95 0.88
MO 2m 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.96 0.92
MO 3m 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.96 0.95
DUK 1m 0.97 0.97 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.95 0.95
DUK 2m 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 0.98 0.97 0.96
DUK 3m 0.97 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.98 0.97 0.97 0.97 0.96
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Table 5
Summary statistics of pricing errors on credit default swapspreads
Entries report the sample mean and standard deviation of thepricing errors on credit default swap spreads,
defined as the difference between observations and model-implied values in percentage points, at five fixed
maturities for each of the four reference companies. The last panel reports the explained variation, defined
as one minus the ratio of the pricing error variance to the variance of the original implied volatility series.
The statistics are based on weekly sampled data from January2, 2002 to April 28, 2004.

Maturity 1 3 5 7 10

Mean:
F -0.58 0.12 0.17 0.14 0.13
GM -0.20 0.01 0.05 0.04 -0.07
MO -0.41 0.01 0.09 0.08 0.28
DUK 0.02 -0.04 -0.05 -0.01 0.03

Standard Deviation:
F 0.51 0.27 0.31 0.32 0.32
GM 0.40 0.40 0.44 0.46 0.47
MO 0.93 0.68 0.60 0.53 0.27
DUK 0.20 0.11 0.13 0.20 0.12

Explained Variation:
F 0.85 0.96 0.93 0.91 0.89
GM 0.79 0.76 0.63 0.55 0.50
MO 0.34 0.35 0.30 0.27 0.31
DUK 0.99 1.00 0.99 0.97 0.84
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Table 6
Maximum likelihood estimates of model parameters
Entries in panel A report the model parameter estimates and absolute values of thet-statistics (in parenthe-
ses), estimated for each of the four reference companies. The estimation is based on weekly sampled data
from January 2, 2002 to April 30, 2004. Panel B reports the estimates andt-statistics for the market price of
risk for the two risk factors (zandv), computed from the model parameter estimates and covariance matrix.

Companies F GM MO DUK

κv 4.0788 ( 47.34 ) 7.8085 ( 121.24 ) 5.7515 ( 163.79 ) 6.5862 ( 69.90 )
κz 0.0067 ( 0.40 ) 0.0065 ( 0.12 ) 0.0067 ( 0.08 ) 0.0485 ( 2.84 )
κP

v 1.1878 ( 1.52 ) 1.6451 ( 25.48 ) 1.2558 ( 5.34 ) 3.4894 ( 2.46 )
κP

z 0.1745 ( 3.71 ) 1.8806 ( 1.81 ) 0.1811 ( 0.81 ) 0.2966 ( 1.43 )
θv 0.4153 ( 33.03 ) 0.5536 ( 83.33 ) 0.2604 ( 82.12 ) 0.6873 ( 96.49)
θz 0.0050 ( 9.34 ) 0.0421 ( 19.15 ) 0.0068 ( 2.29 ) 0.0058 ( 15.36 )
σv 1.3738 ( 84.84 ) 0.8675 ( 36.05 ) 0.7512 ( 112.46 ) 2.0178 ( 38.30 )
σz 0.1740 ( 21.70 ) 0.5749 ( 23.64 ) 1.5864 ( 47.56 ) 0.3685 ( 26.18)
β 0.3062 ( 21.58 ) 0.3303 ( 22.88 ) 0.4776 ( 40.52 ) 0.0993 ( 14.34)
ρ -0.1354 ( 15.35 ) -0.2690 ( 53.27 ) -0.1804 ( 28.83 ) -0.4256 ( 52.77 )
1−w 0.6417 ( 85.54 ) 0.8090 ( 134.09 ) 0.4688 ( 13.89 ) 0.5657 ( 126.65 )

γv 2.1044 ( 3.56 ) 7.1046 ( 35.35 ) 5.9851 ( 17.49 ) 1.5347 ( 2.04 )
γz -0.9645 ( 4.20 ) -3.2600 ( 1.80 ) -0.1099 ( 0.71 ) -0.6733 ( 1.20)
EP[λ] 0.1355 ( 2.13 ) 0.1335 ( 11.59 ) 0.1367 ( 4.42 ) 0.0392 ( 1.91 )
EQ[λ] 0.7751 ( 0.42 ) 6.4610 ( 0.12 ) 1.0416 ( 0.08 ) 0.1302 ( 3.13 )
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Figure 1
The average implied volatility smirk on stock options
Lines are the average implied volatility plotted against put option delta at three fixed maturities: one month
(solid lines), two months (dashed lines), and three months (dash-dotted lines). Each panel is for one com-
pany.
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Figure 2
Time series of CDS spreads and at-the-money stock option implied volatilities.
The solid lines are the time series of CDS spreads at fixed maturities of one, three, five, seven, and ten years,
with scales on the left hand size. The dashed lines are the time series of the at-the-money (50 delta) stock
option implied volatilities at fixed maturities of 30, 60, and 91 days, with the scales on the right hand side.
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Figure 3
Cross-correlations between weekly changes in the five-yearCDS spread and the three-month at-the-
money implied volatility.
The bars show the cross-correlation estimates between weekly changes in the five-year CDS spread and
weekly changes in the three-month at-the-money implied volatility at different leads and lags. The two
dash-dotted lines in each panel define the 95 percent confidence band.
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Figure 4
The contemporaneous response of the credit spread to unit shocks in the two risk factors
Lines denote the contemporaneous response of the credit spread, defined as the difference between contin-
uously compounded spot rate of a reference company and the corresponding spot rate for the libor/swap
market, to unit shocks to the two sources of risksz (solid lines) andv (dashed lines).
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Figure 5
The time series of return variance rates and default arrivalrates.
Solid lines are the extracted time series of the instantaneous variance rate on the diffusion component of the
stock return, with the scales on the left hand side. Dashed lines are the extracted time series of the default
arrival rate on the reference companies, with the scales on the right hand side.
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Figure 6
The term structure of credit default swap spreads.
The solid lines represent the mean term structures computedfrom the estimated model and the sample mean
levels of the two risk factors. Dashed lines are computed by setting vt to the sample average andzt to one
standard deviation away from its sample mean. Dotted lines are computed by settingzt to the sample mean
and varyingvt one standard deviation away from its sample mean.
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Figure 7
The one-month implied volatility smirks.
Moneyness is defined as ln(K/S)/

√
vτ. The solid lines are the mean implied volatility smirks at one-month

maturity computed from the estimated model and the sample mean levels of the two risk factors. Dashed
lines are computed by settingvt to its sample average andzt to one standard deviation away from its sample
mean. Dotted lines are computed by settingzt to the sample mean andvt to one standard deviation away
from its sample mean.
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Figure 8
The six-month implied volatility smirks.
Moneyness is defined as ln(K/S)/

√
vτ. The solid lines are the mean implied volatility smirk at one-month

maturity computed from the estimated model and the sample mean levels of the two risk factors. Dashed
lines are computed by settingvt to its sample average andzt to one standard deviation away from its sample
mean. Dotted lines are computed by settingzt to the sample mean andvt to one standard deviation away
from its sample mean.
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Figure 9
The term structure of at-the-money implied volatilities.
The solid lines are the mean term structure of the at-the-money forward implied volatility computed from
the estimated model and the sample mean levels of the two riskfactors. Dashed lines are computed by
settingvt to the sample average andzt one standard deviation away from its sample mean. Dotted lines are
computed by settingzt to the sample mean andvt to one standard deviation away from its sample mean.
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