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Stock Options and Credit Default Swaps:
A Joint Framework for Valuation and Estimation

ABSTRACT

We propose a dynamically consistent framework that allaws aluation and estimation of stock
options and credit default swaps written on the same refereompany. We model default as controlled
by a Poisson process with a stochastic default arrival Mteen default occurs, the stock price drops
to zero. Prior to default, the stock price follows a continsigprocess with stochastic volatility. The
instantaneous default rate and instantaneous diffusidance rate follow a bivariate continuous Markov
process, with its dynamics specified to capture the empigiddence on stock option prices and credit
default swap spreads. Under this joint specification, wavdedractable pricing solutions for stock
options and credit default swaps. We estimate the joint ayesusing stock option prices and credit
default swap spreads for four of the most actively tradeeresfce companies. The estimation highlights
the interaction between market risk (diffusion variana&) aredit risk (default arrival) in pricing stock
options and credit default swaps. While the credit riskdadbminates credit spreads at long maturities,
the stock return volatility also enters credit spreads attsimaturities due to positive co-movements
between the diffusion variance rate and the default arratal Furthermore, while the diffusion variance
rate influences the implied volatility uniformly across negness, the impact of the credit risk factor
becomes much larger on options at lower strikes. The impfatieocredit risk factor on stock options
also increases with option maturity. For options maturimgik months, the contribution of the credit

risk factor to option pricing is comparable in magnitudette tontribution of the diffusion variance rate.

JEL Classification:C13; C51; G12; G13.

Keywords:Stock options; credit default swaps; default arrival reégrn variance dynamics; option pricing;

time-changed Lévy processes.



Stock Options and Credit Default Swaps:
A Joint Framework for Valuation and Estimation

Markets for both stock options and credit derivatives hagmedenced dramatic growth in the past few
years. Along with the rapid growth, it has become incredginkpar to market participants that stock option
implied volatilities and credit default swap (CDS) spreads inherently linked. Many academic studies
have also empirically documented the positive link betwerdit spreads and stock volatility at both the
firm level and the aggregate levelnterestingly, this empirical relationship has been pyesiaby classical
asset pricing theory. According to the classical stru¢toradel of Merton (1974), corporate bond credit
spreads are functions of financial leverage and firm assatiMy| which both contribute to volatility in the

underlying company'’s stock and hence to stock option indpliaatilities.

Furthermore, when a company defaults, the company’s stooi ipevitably drops by a sizeable amount.
As a result, the possibility of default on a corporate bondegates negative skewness in the risk-neutral
probability distribution of stock returns. This negatideewness is manifested in the relative pricing of
stock options across different strikes. When the Black aciibes (1973) implied volatility is plotted
against some measure of moneyness at a fixed maturity, the efothe plot is positively related to the
risk-neutral skewness of the stock return distributionnile and Mayhew (2002) and Bakshi, Kapadia, and
Madan (2003) examine the negative skew of the implied Jiiaplot for individual stock options. Recent
empirical work, e.g., Cremers, Driessen, Maenhout, anchieim (2004), shows that CDS spreads are
positively correlated with both stock option implied vdlify levels and the steepness of the negative slope

of the implied volatility plot against moneyness.

In this paper, we propose a dynamically consistent framlietat allows joint valuation and estimation
of stock options and credit default swaps written on the saf@eence company. We model company default
as controlled by a Poisson process with a stochastic ardt@l When default occurs, the stock price drops
to zero. Prior to default, we model the stock price by a camtirs process with stochastic volatility. The

instantaneous default rate and instantaneous diffusioange rate follow a bivariate continuous Markov

1Examples include Bevan and Garzarelli (2000), Pedrosa afid(F998), Collin-Dufresne, Goldstein, and Martin (2001)
Bangia, Diebold, Kronimus, Schagen, and Schuermann (2@#)mbell and Taksler (2003), Altman, Brady, Resti, andrBir
(2004), Bakshi, Madan, and Zhang (2004), Ericsson, JaesttsQviedo-Helfenberger (2004), Hilscher (2004), Comngi)04),
and Zhu, Zhang, and Zhou (2005).



process, with its joint dynamics specified to capture theigoah evidence on stock option prices and CDS

spreads.

Under this joint specification, we derive tractable pricsautions for stock options and credit default
swaps. We estimate the joint dynamics of the default ratet@dliffusion variance rate using stock op-
tion prices and CDS spreads for four actively traded comgsaniOur estimation shows that for all four
companies, the default rate is more persistent than thasgfi variance rate under both statistical and
risk-neutral measures. The statistical persistencerdiffee suggests different degrees of predictability. The
risk-neutral difference suggests that the default rateahasre long-lasting impact on the term structure of

option volatilities and CDS spreads than does the diffusanance.

The estimation also highlights the interaction betweenketanisk (diffusion variance) and credit risk
(default arrival) in pricing stock options and credit ddfeawaps. We find that while credit risk dominates
the CDS spreads at long maturities, diffusion variance tsmadfect CDS spreads at short maturities due to
positive co-movements between diffusion variance anduliedarival. On the other hand, the default arrival
rate affects stock option pricing through both its corielatwith the diffusion variance rate and its direct
impact on the risk-neutral drift of the return process. Thpact of the diffusion variance rate on the implied
volatility is relatively uniform across different moneysselevels, but the impact of the default arrival rate
is mainly on options at low strikes. Furthermore, the impeEdhe credit risk factor on stock option prices
increases with the option maturity. For options maturingisnmonths, the contribution of the credit risk

factor to option pricing is comparable in magnitude to thetdbution of the diffusion variance rate.

The positive empirical relation between CDS spreads anckstption implied volatilities has been
recognized only very recently in the academic community.aAssult, efforts to theoretically capture this
link are only in an embryonic stage. In a recent working papetl, Nelken, and White (2004) link CDS
spreads and stock option prices by proposing a new impletientand estimation method for the classical
structural model of Merton (1974). As is well known, thislganodel is highly stylized as it assumes that
the only source of uncertainty is the firm’s asset value. Assallt, stock option prices and CDS spreads
have changes that are perfectly correlated locally. Thesetnpirical observation that implied volatilities
and swap spreads sometimes move in opposite directionsntaibe® accommodated by adding additional

sources of uncertainty to the model. In this paper, we asshateprior to default, the stock price process



is continuous. The drift and diffusion coefficients of thiogess are both stochastic as we assume that the
default arrival rate and diffusion variance rate obey afi@a stochastic process. As a result, we are able
to capture the imperfect positive correlation betweenkstatatility and default risk. Thus, when compared
to efforts based on the structural model of Merton (1974}, cmntribution amounts to adding consistent,
inter-related, but separate dynamics to the relation batwelatility and default. The CDS market and the
stock options market contain overlapping information om mharket and credit risk of the company. Our
joint valuation and estimation framework exploits this dapping informational structure to provide better
identification of the dynamics of the stock return varianod default arrival rate. The estimation results

highlight the inter-related and yet distinct impacts of the risk factors on the two markets.

The rest of the paper is organized as follows. The next septioposes a joint valuation framework for
stock options and credit default swaps. Section 2 descititesgata set and summarizes the stylized evidence
that motivates our specification. Section 3 describes timé¢ gstimation procedure. Section 4 presents the

results and discusses the implications. Section 5 conglude

1. Joint Valuation of Stock Options and Credit Default Swaps

Consider a reference company which has positive probalofidefaulting. LetP, denote the timé-stock
price for this company, which we assume falls to zero upoaulef Let(Q, F , (#t)i>0,Q) be a complete
stochastic basis and 1€t be a risk-neutral probability measurerior to any default the risk-neutral stock
price dynamics are given by:

dR/P = (1t — ¢ + At) dt + /AW, (1)

wherer; and g, denote the instantaneous interest rate and dividend yéslplectively, which we assume
evolve deterministically over time. In (1)(t) denote the risk-neutral arrival rate of the default evert an
\; denotes the instantaneous variance rate for the stoclsidiffueturn component. Both processes evolve
stochastically over time. The stock priBealso evolves stochastically and is driven by standard Biamvn
motionW". The incorporation ok, in the drift compensates for the possibility of a defaulttrsat the stock
price remains a martingale unconditionally under the riskitral measure. Thus, the drift and diffusion

coefficients of this pre-default stock price process aré Btuichastic.



1.1. Joint dynamics of diffusion variance rate and default arival rate

We model the joint dynamics of the default arrival rate anel diffusion return variance rate under the

risk-neutral probability measurg as follows:

du = (By—Kyw)dt+ oy dWY, )
M = Bw+z, )
dz = (8;,—Kzz)dt+0,/zdW?, E[dWdW’] = E [dWdW'] =0 (4)
p = E[dW dw']/dt. (5)

The above specification is motivated by the following engairievidence and economic justification:

e It is well-documented that stock return volatility is staskic. We use a square-root process in equa-

tion (2) to model the dynamics of the instantaneous variafitkee diffusion return component.

e Cremers, Driessen, Maenhout, and Weinbaum (2004) findriinaited volatilities covary with CDS
spreads. Our own empirical analysis finds similar eviderieguation (3) captures the positive co-
movement via a positive loading coefficigBtoetween the default arrival rale and the diffusion

return variance rate.

e Although it is important to recognize the co-movement betwthe stock market and the credit mar-
ket, it is also important to accommodate the fact that thditrarket can show movements inde-
pendent of the stock and stock options market. Weaige capture this independent credit risk

component, with its dynamics controlled by an independguaige-root process specified in (4).

e When the stock price falls, its return volatility often isases. A traditional explanation that dates
back to Black (1976) is the leverage effect. So long as the ¥atue of debt is not adjusted, a falling
stock price increases the company’s leverage and henceskiswhich shows up in stock return
volatility.? Equation (5) captures this phenomenon via a negative atioelcoefficientp between

diffusion shocks in return and diffusion shocks in returnasace.

2v/arious other explanations have also been proposed intéatlire, e.g., Haugen, Talmor, and Torous (1991), Carhabé|
Hentschel (1992), Campbell and Kyle (1993), and Bekaertdnd2000).



1.2. Pricing stock options

Consider the time-value of a European call option(R,K,T) with strike priceK and expiry dateT.
The terminal payoff of the option iPr — K)* if the company has not defaulted by that time, and is zero

otherwise. The value of the call option can be written as,
T
c(R,K,T) = E [exp(—/t (rs+)\s)ds> (PT—K)+] (6)

where the expectation operafy|-| is under the risk-neutral measu@eand conditional on the filtratiog.

Given the deterministic interest rate assumption, we have,

c(R.K,T) = B(t,T)E [exp(—/tT)\sds> (PT—K)+], )

with B(t, T) denoting the time-value of a default-free zero-coupon bond paying one dotlés anaturity

dateT. The expectation can be solved by inverting the followingcdunted generalized Fourier transform,

o(u) = E {exp(— /tT)\sds> ei“'”PT/P*} , ueop CC, (8)

where D denotes the subset of the complex plane under which the &jpecis well-defined. Under
the dynamics specified in (1) to (5), the Fourier transforraxigonential affine in the bivariate risk factor
X = [,z] "

o(u) =exp(iu(r(t,T) ~qt, T)t—am-b® x), T=T-t, ©)

wherer (t,T) andq(t, T) denote the continuously compounded spot interest rate igittedd yield at time

t and maturity datd, respectively, and the time-homogeneous coeffici@its, b(t)] are given by,

_ kM
a(t)y = % [Zln <1—% (1—e‘”VT)> + (nV—K\N/H> r}
\

% _nZ_KZ AN -
+0§ {2In<1 o, (1—e) )+ (Nz—K)T| (10)

2oy (1-e) 2b, (1— e NaT)

-
b1 = [ZHV—(H—KM) (1-e )’ 2nz—(nz—Kz)(1—e‘”ZT)] 7 (1)




with kM =k, — iuoyp, Ny = 1/ (K¥)? +202by, N, = 1/ (K2)?+202b,, by = (1—iu)B + % (iu+u?), and

b, = 1—iu. Appendix A provides details of the derivation. Givefu), option prices can be obtained via

fast Fourier inversion (Carr and Wu (2004a)).

1.3. Pricing credit default swap spreads

For a credit default swap initiated at tirhand with maturity datd, we letS(t, T) denote the premium (the
“CDS spread”) paid by the buyer of default protection. Assgrcontinuous payments for simplicity, the

present value of the premium leg of the contract is,
T S
Premium(t, T) = Ex {S(t,T)/ exp(—/ (ru+)\u)du> ds} . (12)
t t
Assuming that the fractional loss given default is constmt, the present value of the protection leg is,
T S
Protection(t, T) = E; [W/ )\sexp<—/ (ru—H\u)du) ds} . (13)
t t

Hence, by equating the present values of the two legs, wedates for the CDS spread as,

Eq [w ;T Asexp(— ff(ruﬂu)du)ds}
Ty [ftT exp(— [3(ru+Ay)du) ds]

St,T)= (14)

which can be regarded as a weighted average of the expedtadtdess.

Under the dynamics specified in (2) to (5), we can solve forpilesent values of the two legs of the

CDS. The value of the premium leg is,

Premium(t,T) = S(t,T)/tTIEt [exp(—/ts(ru+)\u)du> ds]
- S(t,T)/tT B(t,s)E; [exp(—/tsbfoxuduﬂ ds (15)



with byg = [B,1]". The affine dynamics for the bivariate risk factarand the linear loading functioby

dictate that the present value of the premium leg is an expg@iaffine function of the state vector (Duffie,

Pan, and Singleton (2000)):

]
Premium(t,T) — S(t,T)/t B(t,5)exp(—an(s—t) — by(s—1) 'x ) ds (16)

where the affine coefficients can be solved analytically:

ev v — Ky 0T
() = o2 {2In<1—r]2nvK (1—e ”V)>+(ﬂv—Kv)r}
6, z— Kz N1
+0—§ [Zln (1—n2nZK (1-e ”Z)>+(ﬂz—Kz)r}, (17)

by (1) =

T g T
2B(1—e ™) 2(1—e N )} ’ (18)

[Zm— (N—ky) (1—e™)"  2n,—(Nz—Kz) (L—e Nt

with ny = 1/ (ky)?+ 202B andn, = 1/ (K,)* + 202.

The present value of the protection leg is,

Protection(t,T) = [ [W/tT B(t,s))\sexp<—/s)\udu> ds]
= w/tT B(t,s)Ex { b)\oxS < / xuduﬂ (29)

which also allows for an affine solution:

Protection(t,T) = w/tT B(t,s) (C;\(S— t)+ dA(s—t)Txt) exp(—aA (s—t)—by (s—t)Txt> ds (20)

where the coefficientsay (1),b) (1)) are the same as in (16), and the coefficien{$t(,d, (1)) can also be

solved analytically by taking partial derivatives agai(est(t), b, (1)) with respect to maturity:

c\ (1) =0a)\(1)/0T, d\(T) =0by(T)/0T. (21)



Combining the solutions for the present values of the twa liegequations (15) and (20) leads to the
CDS spread§(t, T). When we estimate the model, we discretize the above equsdi@s to accommodate

quarterly premium payments.

1.4. Market prices of risks and time-series dynamics

Our joint estimation identifies both the time-series dyr@and the risk-neutral dynamics of the bivariate
state vectox, = [w,z]". To derive the time-series dynamics for the bivariate vextoinder the statistical
measure?, we assume that the market prices of risks are proportiorthkt corresponding risk level. Under

this assumption, the time-series dynamics are,
dy = (ev - Kﬂv"vt) dt+ oy dW?, dz = (ez - KHZDZt) dt + 0o/ ZAWZ, (22)

with k¥ = Ky — oy andk? =k, — oW

2. Data and Evidence

Both the stock option prices and the CDS spreads are fursctibthe two risk factorsq = [w,z] ", which
jointly determine the stock diffusion variance and the difarrival rate. Therefore, we can use data on

stock option prices and CDS spreads to infer the joint dynami

2.1. Data description

We estimate the model using CDS spreads and stock opticesprit four reference companies. Bloomberg
provides CDS spread quotes from several broker dealers. s&/guptes from different broker dealers in
order to cross-validate them. Then, we take the quotes dmsses from the most reliable sources. We
choose four companies for which CDS quotes have both a lostgrigiand frequent updates. The four
companies are: Ford (F), General Motors (GM), Altria Groap (MO), and Duke Energy Corp (DUK).

For each company, we have CDS spread series at five fixed tiegtwof one, three, five, seven, and ten

years.



The corresponding stock options data is from OptionMetriEschange-traded options on individual
stocks are American-style and hence the price reflects §nearcise premium. OptionMetrics uses a bi-

nomial tree to back out the option implied volatility thaijpdigitly accounts for this early exercise premium.

For each stock, OptionMetrics provides a standardizedigdplolatility surface at fixed Black-Scholes
forward deltas from 20 to 80 with a five-delta interval for bba@ll and put options, and fixed option matu-
rities of 30, 60, and 91 days. OptionMetrics estimates thaied volatility surface via a kernel smoothing
approach whenever the underlying quotes are available ema las missing values when there are not
enough quotes to make the smoothing estimation. Data attangturities are also available but only very
sparsely. Hence we only use the first three maturities. Tipdiech volatility estimates from OptionMetrics
are often different from calls and puts at similar strikekjch is to be expected when options are American
and the Black Scholes model is not holding. Our interest igsting the validity of our model for European
options and so we adopt a standard practice for estimatimgatarices of European options. The practice
is to take the average of the two implied volatilities at eatttke and convert them into out-of-the-money

European option prices using the Black-Scholes formula.

To price the CDS contracts and to convert the implied vdtatihto option prices, we also need the
underlying interest rate curve. Again following standamdustry practice, we use the interest rate curve
defined by the Eurodollar LIBOR and swap rates. We downlo&IOR rates at maturities of one, two,
three, six, nine, and 12 months and swap rates at two, thoee, five, seven, and ten years. We use a

piece-wise constant forward function in bootstrappingdiseount rate curve.

2.2. Summary statistics

Our model estimation uses the common samples of the threesd#t from January 2, 2002 to April 30,
2004. The data are available on a daily basis, but we estithatenodel using weekly-sampled data on
every Wednesday to avoid the impacts of weekday effectsleThlbeports the summary statistics of the
CDS spreads on the four reference companies. The mean teictuses of the spreads are relatively flat for
all four companies, but the standard deviations of the sisréar all four companies decline with increasing
maturities. The weekly autocorrelation estimates for fireads range from 0.90 to 0.97, showing that the

CDS spreads are highly persistent.



Table 2 reports the summary statistics of stock option ietpliolatilities at the three fixed maturities
and 13 fixed put-option deltas for each of the four referermapanies. For each company and at each
option maturity, the implied volatilities at low strikes{ put deltas) are on average higher than the implied
volatilities at high strikes, generating a negatively sidjaverage implied volatility smirk across moneyness.
The standard deviations of the implied volatility series atso larger for out-of-the-money puts than for
out-of-the-money calls, but the difference is smaller tti@ndifference in the mean estimates. The weekly
autocorrelation for the volatility series range from 0.690t93, indicating that the implied volatilities are

persistent, but less so than the CDS spreads.

Figure 1 plots the average implied volatility smirk at theeth fixed maturities as a function of the put
option delta. For all four reference companies and for afletixed maturities, the average implied volatility
smirk is negatively skewed, corresponding to a negativiedyved risk-neutral stock return distribution. The
three lines in each panel, which correspond to the thre@mptiaturities, stay closely to one another,
suggesting that the conditional risk-neutral distribataf the stock return retains similar shapes at the three
conditioning horizons. Generically, our model specifizatcan generate the negative skewness from two
sources: (1) a positive probability of defauk £ 0) and (2) a negative correlation between the return

Brownian motion component and its instantaneous variagiee@ < 0).

[Figure 1 about here.]

2.3. Co-movements between option implied volatilities andredit default swap spreads

Figure 2 overlays the time series of the CDS spreads (sokd)iwith the daily time series of at-the-money
(50 delta) stock option implied volatilities at the threeefixoption maturities (dashed lines) for the four
chosen reference companies. We observe apparent commammots for the two types of time series for
each company. The co-movements are the most obvious dweriaglp of financial distress for the company,

as the two sets of time series both spike up.

[Figure 2 about here.]
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To quantify the co-movements, at each date we fit a second potiemomial on the three-month implied
volatilities across moneyness, |,

IV; (d) = & + bydy + ¢d?,

where the moneynesy is defined aslh = (INP/K + (r — )t +1V21/2)/(IV \/T). We use the intercept
estimated as a smoothed estimate for the at-the-money implied vityafiNT M\{) at d; = 0, and use the
normalized slope estimagKEW = Bt/a as a proxy for the risk-neutral skewness of the return distion.
Then, we use the five-year CDS spread to proxy the credit@@@aS) and run restricted and unrestricted

versions of the following regression:
CDS =a+bATMV+cSKEW+ 4. (23)

Table 3 reports the parameter estimatestatistics, andR? of the regressions for the four reference com-
panies. When the at-the-money volatility level is the ontplanatory variable, the estimates for its slope
coefficient are positive and highly significant for all fousrapanies. When the skewness measure is the
only explanatory variable, its slope coefficients are riegatnd highly significant for all four companies.
Thus, an increase in credit spreads is often associatedawithcrease in the option volatility level and a
steepening in the negative slope of the implied volatilityirk. When we incorporate both the volatility
level and the skewness measure as explanatory variabkes|ape coefficient estimates on the skewness
measure are no longer statistically significant, suggggtat the link with the credit market is driven by
one source of risk. The R-squares of the joint regressidfer dicross different companies, as high as 83%
for Ford, but as low as 36% for Altria Group. The variationsoas different companies and the |&®# esti-
mates in some instances suggest that although return garga default arrival share common movements,
they also have their own independent movements. From a mgdstrspective, it is important to capture
not only the common movements between the two markets, batthé idiosyncratic movements in each
market. Our bivariate risk dynamics in equations (2) to @) accommodate different degrees of common

and idiosyncratic movements.

Given the persistence of both CDS spreads and implied roéstj we also study how the weekly
changes of one series is correlated with the weekly chanigéte mther series. Figure 3 plots the cross-

correlation estimates at different leads and lags betwesakly changes in the five-year CDS spread and

11



the three-month at-the-money implied volatility. The dasltted lines in each panel denote the 95 percent
confidence band. For all four reference companies, we igesignificantly positive contemporaneous
correlations between the weekly changes of the two seridl,thhe estimates ranging from 0.52 to 0.61.

The cross-correlation estimates at other leads and ladargedy insignificant.

[Figure 3 about here.]

3. Joint Estimation of Return Variance and Default Arrival D ynamics

We estimate the bivariate risk dynamics jointly using bofbSCspreads and stock options. We cast the

model into a state-space form and estimate the model usings-gnaximum likelihood method.

In the state-space form, we regard the bivariate risk vem$athe unobservable states and specify the

state propagation equation using an Euler approximatigheofime-series dynamics in equation (22):

By e it 0 02v_ 1At 0
X = At + oo X1t &, (24)
0, 0 ek 0 0271t

wheree denotes an iid bivariate standard normal innovationZstnd 7/365 denotes the sampling frequency.

We construct the measurement equations based on CDS sprahgock options, assuming additive,

normally-distributed measurement errors:
Yo =h(x;0) +a, (25)

wherey; denotes the observed series &fd; ©) denotes the corresponding model value as a function of the
state vectorg and model parametef@. Specifically, the measurement equation contains five CD&sdp
series and 39 option series,

S(X,t+ 15 O) 1s=1,3,5,7,10 years

h(x;©) = : (26)
O(X,t+10,0;0) To = 30,60,91 daysd = 20,25,--- ,80,

12



whereS(x,t + 1s) denotes the model value of the CDS spreads at tiewed maturityts as a function of

the state vectax, and model paramete®, O(x,t + 1o, d; ©) denotes the model value for out-of-the-money
options at timd, time-to-maturityto, and deltad, as a function of the state vectgrand model parameters

©. To deal with the predictable variation in option premiacssr strikes and maturity, we followed the
standard industry practice of dividing out-of-the-mongjian prices by their Black-Scholes vega. There
are missing values on both the CDS data and the implied irylaturface. Our estimation algorithm readily
handles missing observations. The tegnn (25) denotes the measurement errors. We assume thatehe fiv
CDS series generate iid normal pricing errors with the samar gariancec?. We also assume that the

pricing errors on all the options (scaled by their vega) e &d normal with error varianceg.

When both the state propagation equation and the measureqpgstions are Gaussian and linear, the
Kalman (1960) filter generates efficient forecasts and @sdah the conditional mean and covariance of
the state vector and the measurement series. In our ajticéthe state propagation equation in (24) is
Gaussian and linear, but the measurement equation in (Bbplgear. We use the unscented Kalman filter
(Wan and van der Merwe (2001)) to handle the nonlinearitye Uiscented Kalman filter approximates the
posterior state density using a set of deterministicallgselm sample points (sigma points). These sample
points completely capture the true mean and covarianced@b#ussian state variables, and when propagated
through the nonlinear functions in the measurement equaticapture the posterior mean and covariance
of the CDS spreads and option prices accurately to the sesroled for any nonlinearity. Lef,,; andVi 1
denote the time-ex ante forecasts of tim@-+ 1) values of the measurement series and the covariance of the
measurement series, respectively obtained from the utest&alman filter. We construct the log-likelihood

value assuming normally distributed forecasting errors,

l141(0) = _:_2L log |[Viya| — 2_2L ((yt+1 ~Vier) (Ves) e — Vt+1)) : (27)

The model parameters are chosen to maximize the log likadilod the data series,

N-1
©=argmax: (©.{}ily). With £(O.{}iy)= 3 ha(O). (28)
t=

whereN denotes the number of weeks in our sample.
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4. Joint Dynamics and Pricing of Return Variance and DefaultArrival Risks

First, we summarize the performance of our joint valuatiamdei on CDS spreads and stock options on the
four reference companies. Then, from the structural paemestimates, we discuss the joint dynamics and

pricing of the diffusion variance risk and default arrivislk:

4.1. Performance analysis

Table 4 reports the sample mean in the first panel and theasthakkviation in the second panel of the
pricing errors on the stock options. We define pricing eregr¢he difference between the implied volatility
quotes (in percentage points) and the corresponding madleds. The mean pricing errors are fairly small
and show no obvious patterns across moneyness and matufitiee standard deviation ranges from one
to four percentages points. Comparing these estimategtm#an implied volatility estimates in Table 2
points to an average pricing error of less than ten perceme. Idst panel of the table reports the explained
variation, defined as one minus the variance of the pricingreover the variance of the original implied
volatility series. The explained variations are over 90cpet for most series, showing that the model is

relatively successful in capturing the behavior of stoctians on all four companies.

Table 5 reports the sample mean and standard deviation giritiag errors as well as the explained
variation on the CDS spreads. The pricing errors are largeghe swap spreads. The explained variations
are over 80 percent for Ford and Duke Energy, but the modet®pnance is relatively poor for General
Motors and Altria Group. The model explains over 50 percémaniation in the CDS spreads on General

Motors, and just about 30 percent on Altria Group.

Inspecting the time series plots in Figure 2, we observeftiraBeneral Motors, the five CDS spread
series diverge dramatically after January 2003 to gener&iry steep term structure from a virtually flat
term structure before 2003. This dramatic term structuesmgh either comes from economic forces or from
the mere fact that there was more frequent quote updatirfieisdcond half of the data. Irrespective of the
underlying reasons, our two-factor model seems to haveudlifiés fitting the whole term structure of CDS
spreads and the options data. The model performs well oheatiptions series, and also reasonably well on

short-term CDS spreads, but it performs poorly on the l@mgitCDS spreads. For Altria Group, the CDS
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qguotes are not updated as frequently before 2003, whereasptlons data are actively quoted and traded.
It is potentially due to this difference that the model paetens are geared to price the options market better

than the CDS spreads.

4.2. The joint dynamics of return variance and default arrival rates

Table 6 reports the maximum likelihood estimates tusthtistics of the structural parameters that control
the joint dynamics of the diffusion variance rate and thedkfarrival rate. The joint dynamics differ across

different companies. Nevertheless, several common festmerge from the estimates.

First, the estimates for the risk-neutral mean-revertiogfficients K, K;) and their statistical counter-
parts ¥, kY) show that the default arrival rate is more persistent thardiffusion variance rate under both
the risk-neutral measur@ and the statistical measufe The difference in statistical persistence suggests
that the diffusion return variance rates are strongly nreaerting and hence predictable, but it is difficult to
predict changes in the independent credit risk factor basdts past values. The difference in risk-neutral
persistence dictates that the two factors have differepaats across the term structure of options and CDS
spreads. Shocks on the diffusion variance rate affect the-grm options and CDS spreads, but dissipate
quickly as the option and CDS maturity increases. Shockshernmriore persistent credit risk factor last

longer across the term structure of options and credit dprea

For each risk factor, the difference in persistence undetwo probability measures defines the market

price of that factor’s risk:

W= (Ky— Kg)/cw Yz = (Kz— KHZD)/GZ' (29)

We compute the market pricég,, y,) based on the parameter estimates and report them in ttoerbpénel
of Table 6. The estimates for all four companies show pasitiarket price for the diffusion variance risk,

but negative market price for the independent credit risk.

Several studies, e.g., Bakshi and Kapadia (2003a,b) armda@adVu (2004b), use stock and stock index
options and the underlying time series returns to studydtad teturn variance risk premia. They find that
the risk premia are negative for some stocks, and highlytivegir stock indexes. Our model decomposes

the total risk on an individual stock into two componentskiin the diffusion variance rate and risk in the
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default arrival rate. By using both the CDS data and stockonptdata, we are able to separate the two
sources of risks and identify their respective market gri€@ur estimation suggests that for the four stocks,

negative risk premia only come from the default arrival rate not from the diffusion variance rate.

Under our specification, market prices not only dictate thesigtence difference of the risk factors
under the two measures, but also create differences in tigerl;n means of the risk factors under the two

measures. In particular, the statistical mean and thenésktral mean of the default arrival rate are given by,

E'A] = EF[Bv+7 =B(ky) "6+ (K;) 16, (30)

ECA = E°[Bv+7=B(k,) 6+ (k) 16, (31)

The bottom panel of Table 6 also reports the two mean estari@eed on the parameter estimates. The
mean default arrival rate is much lower under the statistiezasurdP than under the risk-neutr&) for all

four companies. These estimates are consistent with th&ieahffindings in the corporate bond literature
that the historical average default probabilities are moaler than those implied from the corporate bond

credit spreads.

If we define the credit spread at a maturitys the difference between the continuously compounded
spot rate on a reference company and the correspondingapathithe benchmark Eurodollar market, this

spread is affine in the two risk factors under our model spetitin,

CSt1) = [a“r(r)} + {b‘mrxﬁ (32)

T

where the solutions te, (1) andb, (1) are given in equations (17) and (18). Henbg(t)/T1 measures the
contemporaneous response of the credit spread term s&ruotunit shocks on the two risk factors. Figure 4
plots this response as a function of the credit spread naturhe solid lines denote the response to the
independent credit risk factarand the dashed lines denote the response to the diffusiéemearfactor
v. As the time to maturity approaches zero, the loading caeffit, (1) /T converges to the instantaneous
coefficientb,g, which is normalized to unity for the credit risk factoand is for the diffusion variance

ratev. The decay rate due to increases in time to maturity are aedrby the risk-neutral persistence of

3See, for example, Huang and Huang (2003), Eom, Helwege, amtidd(2004), Elton, Gruber, Agrawal, and Mann (2001),
and Collin-Dufresne, Goldstein, and Helwege (2003).
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the two risk factors. The higher persistencezidictates that its impact declines more slowly as maturity

increases than does the impact of the more transient factor

[Figure 4 about here.]

Another common finding among the four reference companitmishe default arrival rates all covary
positively with the diffusion variance rate, as the estesator the loading coefficierft are all positive.
Furthermore, for all four companies, the estimates for tistaintaneous correlation between stock return

and return variancpg are negative, consistent with the classic leverage effect.

Finally, the literature has often found it difficult to seataly identify the recovery rate and the default ar-
rival rate using credit spread data alone (Houweling angt\@005), Hull and White (2000), and Longstaff,
Mithal, and Neis (2005)). As a result, researchers oftenrassa fixed recovery rate, usually between 30
to 50 percent, instead of estimating it along with other ngadeameters. By exploiting the overlapping
information from the stock options market and the CDS manketare able to separately identify the re-
covery rate(1—w) and the default arrival rate dynamics with high statist®ighificance. Our recovery
rate estimates are between 47 and 81 percent, higher thanotimally assumed values. Nevertheless, the
estimates are in line with the high actual recovery rategduecent years reported in Altman (2006). They
are also similar to the average recovery estimates by Dabklanduna (2006) using corporate CDS spreads

and sovereign recovery rate estimates by Pan and Singl286%) based on sovereign CDS term structures.

Figure 5 plots the extracted time series on the variancésaliel line) and the default arrival rate (dashed
line), with scales on the left and right hand sides ofytrexis, respectively. The extracted time series show
co-movements that match the time series plots of the CD&dprand implied volatilities in Figure 2. The
plots for all four companies show a spike for both the vararate and the default arrival rate in late 2002,

a reflection of the financial stress during that period.

[Figure 5 about here.]
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4.3. The term structure of credit default swap spreads

Given the model parameter estimates in Table 6, we can cempatterm structures of the CDS spreads
at different levels of the risk factors, z). In Figure 6, we plot the model-implied mean term structure o
the CDS spreads in solid lines, where we set the risk levelsdin respective sample averages. The two
dashed lines in each panel are constructed by setting fiusidifi variance rate to its sample mean and the
independent credit risk factor to one standard deviatioayafnom its sample mean. The two dotted lines
in each panel reflect the impact of one standard deviationemewnts of the diffusion variance rate while

holding the independent credit risk factor to its samplemea

[Figure 6 about here.]

The estimated model parameters on the four companies gerkif@rent mean term structures on the
CDS spreads. Nevertheless, the impacts of the two riskriastmw similar patterns. First, a one standard
deviation move of the independent credit risk factor has ahrarger impact on the CDS spreads than a
one standard deviation move of the diffusion variance ipporting the hypothesis that the CDS market
is mainly a market for credit risk. Furthermore, the impacthe diffusion variance rate is mainly at short
maturities. Its impact declines rapidly as maturity inse=sa In contrast, the impact of the independent

credit risk factor is much more persistent.

4.4. The implied volatility smirk and term structure

To understand how the two risk factors contribute to theipgiof stock options, we compute and plot

the one-month implied volatility smirks across differenbmeyness in Figures 7 at different risk levels. In
computing the option values and constructing the implieltidy smirks, we assume zero interest rates
and dividend yields, and define the moneyness @¢§/18) /1/vt, which can be approximately interpreted as
the number of standard deviations that log spot is below tdges The solid lines are the mean implied

volatility smirks evaluated at the sample means of the twk factors. The two dashed lines in each panel
are generated with the diffusion variance rate at its sammglan and the independent credit risk factor one

standard deviation away from its sample mean. Hence, theymathe impact of shocks in the independent
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credit risk factor. The two dotted lines in each panel areegatied by setting the independent credit risk
factor at its sample mean and the diffusion variance ratenatstandard deviation away from its sample

mean. Hence, the dotted lines capture the impact of shodke idiffusion variance rate.

[Figure 7 about here.]

The implied volatility smirks show similar patterns acrdiss four companies. Furthermore, variations
in the diffusion variance rate level lead to relatively wnifi shifts in the implied volatility smirk across
moneyness. In contrast, the impact of the independenttaisklfactor is mainly at low strikes. The impact

of the credit risk factor on far out-of-the-money call optionplied volatilities (at high strikes) is negligible.

To see how the impact changes at different maturities, voepdds in Figure 8 the corresponding implied
volatility smirk for six-month options. As for the one-mbnimplied volatility smirk, the impacts of the
diffusion variance rate (dotted lines) are relatively onifi across all moneyness levels, whereas the impacts
of the independent credit risk factor (dotted lines) arergjer at lower strikes. Comparing Figures 7 and
8 also brings out visible differences: The impact of the petalent credit risk factor is larger at longer

maturities.

[Figure 8 about here.]

Figure 9 plots the term structure of the at-the-money intplielatilities at different risk levels. Again,
we use the solid line to denote the mean term structure, tekedalines to capture the impact of one
standard deviation moves on the independent credit righrfaand the dotted lines to capture the impact
of the diffusion variance rate. At short option maturitie® find that for all four companies, the impact of
the diffusion variance rate is much larger than the impathefindependent credit risk factor. However, as
maturity increases, the influence of the diffusion variarate declines, whereas the influence of the credit
risk factor increases. For six-month options on GM, the iotpaf the two risk factors become comparable

in magnitude.

[Figure 9 about here.]
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5. Summary and Conclusions

Based on documented evidence on the joint movements bet@®&nhspreads and stock option implied
volatilities, we propose a dynamically consistent framewfor the joint valuation and estimation of stock
options and CDS spreads written on the same reference cgmpyia model the possible default of a
company by a Poisson process with stochastic arrival raig,wee assume that the stock price falls to
zero upon default. We model the pre-default stock price Baaing a continuous process with stochastic
volatility. We assume that the default arrival rate andudiibn variance rate follow a bivariate process
with dynamic interactions that match the empirical evidehoking stock option implied volatilities and
CDS spreads. Importantly, our dynamic specification allbwth common movements and independent

variations between the two markets.

Under this joint specification, we derive tractable pricsautions for stock options and credit default
swaps. We then estimate the joint dynamics of the diffusimmawnce rate and the default arrival rate using
data on stock option implied volatilities and CDS spreadd$dar of the most actively traded reference com-
panies. Estimation of the model parameters shows that faeltarrival rate is much more persistent than
the diffusion variance rate under both the statistical meaand the risk-neutral measure. The statistical
persistence difference suggests different degrees ofgtabdity. The risk-neutral difference in persistence
suggests that the default arrival rate has a more longiastipact on the term structure of option volatilities

and CDS spreads than does the diffusion variance.

The estimation also highlights the interaction betweenketaand credit risk in pricing stock options
and credit default swaps. We find that the independent crstlifactor dominates CDS spreads at long
maturities, but stock return volatility can also affect CB@eads at short maturities, due to positive co-
movements between diffusion variance and default arr®@althe other hand, the default arrival rate affects
stock option pricing through both its correlation with th&ukion variance rate and its direct effect on the
risk-neutral drift of the return process. We find that the a&ipof the diffusion variance rate on the implied
volatility is relatively uniform across different moneyslevels, while the impact of the credit risk factor
is mainly on options at low strikes. Furthermore, the impdc¢he credit risk factor on stock options prices

increases with the option maturity. When the option has t&igumonths to maturity, the contribution of the
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credit risk factor to option pricing is comparable in magdi to the contribution of the diffusion variance

rate.

We conclude that one can learn more about the stock optiothghenCDS market by developing a
model that integrates both markets, rather than having-aepmodels for each market. In particular, one
can identify the recovery rate on the bond insured by CDS nmuaie effectively by adjoining stock option
prices to CDS data.
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Appendix. Generalized Fourier transform of stock returns

To derive the generalized Fourier transform:
T :
o(u) =& [exp(—/ )\Sds> e'”'”PT/H] , ueocCc, (A1)
t
we use the language of stochastic time change of Carr and U046 and define
T T T
T = / veds 7= / zds 7= / Asds= 7,2+ Bi.

t t t

Then, conditional on no default during the time horiZo], with T =T —t, we can write the log stock return as
1
In(Pr/R) = (r(t,T) —a(t,T) T+ 7} + Wy — S, (A2)

wherer (t,T) andq(t, T) denote the continuously compounded spot interest ratedigittnd yields of the relevant

maturity.

The discounted generalized Fourier transform becomes,

@(u) Fy {exp(—‘rt}‘ +iu(r(t,T) —q(t, T) T+iuz +iuwh — %iuft)]

E {exp(iuwg + }uszt) exp(—‘rt}‘ +iu(r(t, T) —q(t,T)) T+iug — %iuq‘t - %uzfrt)]

oo
|

exp(iu (r(t,T) —q(t,T)) 1) EM exp(— (1—iu) 7 — % (iu+u?) Ttﬂ

= exp(iu(r(t,T)—q(t, T)T)E" exp(—(l—iu)'ftz— ((1—iu)B+%(iu+uz)>'ft)],

where the new measuiM is defined by

dur
dQ

. 1
— exp(luV\/g + Euzfrt) ,
t

under which the drift of the two dynamic processes change to:

W = 8y — (ky—iuayp)v(t) = 8, —kMv(t),

W= 8,—kz(t).
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We have

(u) = exp(iu (r(t, T) — q(t, T)) ) E™ [exp(— /tT ngsds)] ,
with % = [w,z] ", bo = [by,b] ", by = (1 —iu) B+ 2 (iu+u?), andb, = 1 —iu.

Since the risk factors follow affine dynamics, the solution is exponential affinegn

@(u) = exp(iu (r(t,T) —q(t, T)) 1) exp(—a(t) — b(1) %),

where the coefficients can be solved analytically as in (h@)@1).
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Table 1

Summary Statistics on credit default swap spreads

Entries report the sample estimates of the mean, standaiatida, and weekly autocorrelation on the credit
default swap spreads (in percentages) at five fixed matufiiieeach of the four reference companies. The

statistics are based on weekly sampled data from Januaf02,t® April 28, 2004.

Maturity 1 3 5 7 10
Mean:

F 2.19 2.89 2.97 2.95 2.87
GM 151 2.03 2.19 2.28 2.15
MO 1.79 1.78 1.75 1.69 1.79
DUK 2.31 2.14 1.99 1.92 1.27

Standard Deviation:

F 1.31 1.38 1.16 1.06 0.96
GM 0.89 0.82 0.72 0.69 0.67
MO 1.15 0.84 0.72 0.62 0.32
DUK 1.93 1.60 1.31 1.17 0.31

Autocorrelation:

F 0.97 0.97 0.96 0.95 0.95
GM 0.96 0.95 0.94 0.92 0.93
MO 0.91 0.92 0.92 0.90 0.94
DUK 0.96 0.97 0.96 0.96 0.96
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Table 2

Summary statistics on stock option impled volatilities

Entries report the sample estimates of the mean, standaidtida, and weekly autocorrelation on the
implied volatilities (in percentages) at 13 fixed deltas tmde fixed maturities for four reference companies.
The statistics are based on weekly sampled data from Jaguagp2 to April 28, 2004.

Delta 20 25 30 35 40 45 50 55 60 65 70 75 80

Mean:

F Im 50.07 49.09 48.02 46.82 45.84 44.74 43.68 43.12 42.5254241.95 41.98 42.28
F 2m 50.49 48.87 47.45 46.18 45.19 44.14 43.19 42.62 42.13%3441.45 41.47 41.67
F 3m 49.98 47.97 46.64 45.46 4453 43.61 42.73 42.14 41.48034010.63 40.46 40.53
GM 1m 40.87 39.39 38.16 37.14 36.33 35.60 34.95 34.42 33.96643333.19 32.94 32.95
GM 2m 41.45 39.92 38.64 37.49 36.51 35.70 34.97 34.35 33.81293332.81 32.41 32.17
GM 3m 4158 39.84 38.46 37.29 36.24 35.34 34.58 33.92 33.31713232.14 31.64 31.27
MO 1m 33.73 32.07 30.84 29.89 29.24 28.69 28.36 28.06 27.74502727.42 27.55 28.07
MO 2m 33.23 31.79 30.71 29.85 29.17 28.63 28.21 27.81 27.4292726.86 26.78 26.91
MO 3m 33.09 31.78 30.80 29.97 29.25 28.63 28.12 27.66 27.24852&26.50 26.23 26.04
DUK 1m 46.40 44.28 42.65 41.37 39.94 38.66 37.67 37.04 36.%%6123 35.94 35.79 36.14
DUK 2m 46.09 43.96 42.26 40.85 39.48 38.22 37.25 36.58 35.%4303 34.69 34.30 34.38
DUK 3m 4497 43.08 41.42 39.94 38.65 37.39 36.42 35.70 34.9R173 33.46 32.97 32.80

Standard Deviation:

F Im 15.93 15.29 14.71 14.31 13.88 13.40 12.95 12.39 11.90r2111.47 11.17 10.59
F 2m 15,55 15.03 14.39 13.57 12.97 1240 11.86 11.64 11.3%621010.33 10.15 10.03
F 3m 15.24 14.41 13.69 12.85 12.27 11.79 11.31 11.14 10.63410.9.75 9.49 9.16
GM 1m 15.37 1464 1395 13.39 12.86 12.23 11.68 11.26 10.83391010.00 9.61 9.20
GM 2m 14.60 13.88 13.14 1251 1195 11.35 10.79 10.30 9.856 9.9.04 8.61 8.14
GM 3m 13.97 13.16 12.37 11.68 11.08 1051 9.98 9.49 9.05 8.63087.76 7.29

MO 1m 1099 10.38 9.96 9.62 925 898 871 846 8.18 7.93 7.777107 7.74

MO 2m 9.65 910 871 839 807 782 760 7.36 7.12 6.95 6.816 6.6.52

MO 3m 9.18 865 820 785 757 733 7.11 6.89 6.69 6.56 6.426 6.5.13

DUK 1m 19.25 18.36 17.76 17.05 16.44 15.82 15.20 14.65 14.23911 13.47 13.04 12.54
DUK 2m 17.43 16.52 15.94 15.36 14.72 14.06 13.47 1294 1255151 11.64 11.16 10.64
DUK 3m 16.54 15.61 14.80 14.16 13.50 12.86 12.29 11.77 11.¥8961 10.50 10.05 9.63

Autocorrelation:

F lm 083 086 087 089 087 084 084 085 084 085 0.85 0.887
F 2m 089 087 088 091 088 086 087 086 088 090 0.91 0.9190
F 3m 093 091 091 094 091 089 089 089 091 093 0.92 0.001
GM 1Im 092 093 093 093 093 093 093 093 092 0.92 0922 0.9.90
GM 2m 095 095 095 095 095 095 095 095 095 094 094 30.9.92
GM 3m 09 096 096 096 096 096 095 095 095 0.95 0.9550.9.94
MO 1m 078 078 079 080 081 082 082 081 081 0.81 0.806 0.D.69
MO 2m 084 084 085 085 086 086 086 086 087 087 0.864 0.8.80
MO 3m 087 088 088 088 089 089 089 089 089 089 0.8990.8.88
DUK Im 090 090 090 089 090 090 091 091 090 0.90 0.89890.0.88
DUK 2m 093 093 093 092 092 093 093 092 092 0.91 0.91910.0.91
DUK 3m 095 094 094 094 094 094 093 093 093 0.93 0.93930.0.93
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Table 3
Regressing CDS spreads on stock option implied volatilityevels and skews
Entries report the parameter estimatestatistics (in parentheses), afd for different versions of the

following regressions on four reference companies:
CDS =a+bATMV{+cSKEW+ &,

where CDS denotes the five-year credit default swap spreads in pegenpoints, AT M{ denotes a
smoothed estimate of the three-month at-the-money impladtility in percentage points, anBKEW
denotes a normalized slope estimate on the implied vdjaskew against moneyness. Data are weekly
from January 2, 2002 to April 28, 2004. To compute tkstatistics, we cast the regression into a GMM
framework, and estimate the covariance matrix followingvise and West (1987) with four lags.

Companies a b C 3

F .0.997 (-2.786) 0092 (10.62) — — 0.82
GM 0.267  (1.139) 0.055  (9.46) — — 0.58
MO 0.088  (0.242) 0.059  (3.98) — — 0.34
DUK 1231 (-5.391) 0.088 (10.63) — — 0.69
F 0996  (4.796) — — 15989  (-8.03) 0.53
GM 0.900 (3.672) — — 7.988 (-5.75) 0.46
MO 0978  (3.282) — — 5465 (-2.43) 0.15
DUK -0.055 (-0.143) — _ 10.795  (-4.27) 0.30
F 0.928 (-2.523) 0.083  (6.44) 2584 (-1.30) 0.83
GM 0.289  (1.255) 0.049  (4.68) 1173 (-0.65) 0.59
MO -0.060 (-0.156) 0052  (3.71) 2491 (-155) 0.36
DUK 1226 (-5.194) 0088  (7.09) 0.081  (0.04) 0.69
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Table 4

Summary statistics on the pricing errors in stock option imgded volatilities

Entries report the sample mean and standard deviation gfritieg errors in stock option implied volatil-
ities, defined as the difference between observations anmtlrmplied values in percentage points, at 13
fixed deltas and three fixed maturities for four reference mames. The last panel reports the explained
variation, defined as one minus the ratio of the pricing eveorance to the variance of the original implied
volatility series. The statistics are based on weekly sathghta from January 2, 2002 to April 28, 2004.

Delta 20 25 30 35 40 45 50 55 60 65 70 75 80

Mean:

F 1Im -0.26 0.68 0.86 0.75 060 0.15 -0.36 -0.83 -0.86 -0.9091-0-0.71 -0.43
F 2m -1.05 -0.07 041 0.57 0.67 047 0.16 0.09 -0.04 -0.32 7-0-:8.36 -0.31
F 3m -1.87 -0.91 -0.10 035 0.67 0.71 055 0.52 0.22 -0.09 9-0:P.50 -0.66
GM 1m 0.01 030 032 0.25 0.16 0.03 -0.12 -0.22 -0.31 -0.40450-0.43 -0.18
GM 2m -0.74 0.02 040 051 051 049 042 035 0.29 0.18 0.094-0-0.01
GM 3m -156 -0.66 -0.13 0.14 0.23 0.24 0.23 0.21 0.13 0.01 60-D.31 -0.38
MO 1m 0.67 048 0.24 0.00 -0.11 -0.23 -0.21 -0.21 -0.28 -0.3222 0.05 0.66
MO 2m -0.70 -0.30 -0.10 -0.02 0.02 0.05 0.09 0.06 -0.02 -0.1@m13 -0.08 0.13
MO 3m -1.38 -0.63 -0.16 0.11 0.22 0.27 0.28 0.24 0.15 0.03 2-0:0.25 -0.35
DUK 1m -0.53 -0.49 -045 -0.38 -0.65 -0.96 -1.10 -1.01 -0.86.73 -0.46 -0.25 0.33
DUK 2m -1.05 -0.55 -0.19 0.08 0.10 0.02 0.05 0.25 0.33 0.29 40.D.08 0.35
DUK 3m -2.02 -1.11 -0.56 -0.24 -0.03 -0.04 0.05 0.23 0.21 0.e6814 -0.28 -0.22

Standard Deviation:

F Im 392 387 360 374 357 330 293 276 265 257 253 2253
F 2m 252 252 250 266 257 237 200 192 160 127 130 1B84
F 3m 190 188 187 200 208 203 188 181 160 154 156 13582
GM 1m 176 177 168 161 147 120 098 085 0.76 0.84 0.954 1.1.63
GM 2m 125 099 108 116 117 106 096 0.89 0.87 090 09521140
GM 3m 137 066 069 087 100 104 106 1.08 1.07 1.07 1.133 1.2.40
MO 1m 257 237 214 201 184 156 136 130 119 102 1.182 1.2.65
MO 2m 139 127 117 1.11 108 1.02 1.01 1.07 1.09 109 1141 1.482
MO 3m 1.08 093 094 097 107 110 1.14 119 122 123 1.248 1.2.38
DUK 1m 348 326 333 326 325 298 256 258 247 237 2.71812.2.90
DUK 2m 286 245 229 219 204 187 162 149 154 158 1.66811.2.20
DUK 3m 272 246 225 218 208 196 195 188 1.78 1.77 1.76/51.1.89

Explained Variation:

F Im 094 094 094 093 093 094 095 095 095 095 0.95 0083
F 2m 0.97 0.97 097 096 096 096 097 097 098 099 098 0087
F 3m 098 098 098 098 097 0.97 097 097 098 0.98 097 00B6
GM 1m 099 099 099 099 099 099 0.99 099 1.00 0.99 0.999 0.0.97
GM 2m 099 099 099 099 099 0.99 099 099 099 0.99 0.998 0.0.97
GM 3m 099 100 100 099 099 0.99 099 099 099 0.98 0.987 0.0.96
MO 1m 095 095 095 096 096 0.97 098 098 0.98 0.98 0.985 0.0.88
MO 2m 098 098 098 098 098 0.98 098 098 0.98 0.98 0.976 0.06.92
MO 3m 099 099 099 098 098 0.98 097 097 097 096 0.966 0.0.95
DUK 1m 0.97 097 096 096 096 096 0.97 0.97 097 0.97 0.9850.0.95
DUK 2m 0.97 098 0.98 098 098 098 0.99 0.99 099 0.98 0.987 0.0.96
DUK 3m 0.97 098 098 098 098 098 0.97 0.97 098 0.97 0.9070.0.96
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Table 5

Summary statistics of pricing errors on credit default swapspreads

Entries report the sample mean and standard deviation @fritieg errors on credit default swap spreads,
defined as the difference between observations and mogdikevalues in percentage points, at five fixed
maturities for each of the four reference companies. Thepkasel reports the explained variation, defined
as one minus the ratio of the pricing error variance to th@éawae of the original implied volatility series.
The statistics are based on weekly sampled data from Jaguagp2 to April 28, 2004.

Maturity 1 3 5 7 10
Mean:

F -0.58 0.12 0.17 0.14 0.13
GM -0.20 0.01 0.05 0.04 -0.07
MO -0.41 0.01 0.09 0.08 0.28
DUK 0.02 -0.04 -0.05 -0.01 0.03

Standard Deviation:

F 0.51 0.27 0.31 0.32 0.32
GM 0.40 0.40 0.44 0.46 0.47
MO 0.93 0.68 0.60 0.53 0.27
DUK 0.20 0.11 0.13 0.20 0.12

Explained Variation:

F 0.85 0.96 0.93 0.91 0.89
GM 0.79 0.76 0.63 0.55 0.50
MO 0.34 0.35 0.30 0.27 0.31
DUK 0.99 1.00 0.99 0.97 0.84
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Table 6

Maximum likelihood estimates of model parameters
Entries in panel A report the model parameter estimates bsal#e values of thestatistics (in parenthe-

ses), estimated for each of the four reference companies.e$timation is based on weekly sampled data

from January 2, 2002 to April 30, 2004. Panel B reports thienedes and-statistics for the market price of
risk for the two risk factorsandv), computed from the model parameter estimates and cocariaatrix.

Companies F GM MO DUK

Ky 4.0788 (47.34) 7.8085 (121.24) 5.7515 (163.79) 6.5862 q®P.
Kz 0.0067 (0.40) 0.0065 (0.12) 0.0067 (0.08) 0.0485 (2.84)
Ky 1.1878 (1.52) 1.6451 (25.48) 1.2558 (5.34) 3.4894 (2.46)
K 0.1745 (3.71) 1.8806 (1.81) 0.1811 (0.81) 0.2966 (1.43)
By 0.4153 (33.03) 0.5536 (83.33) 0.2604 (82.12) 0.6873 (9p.49
6, 0.0050 (9.34) 0.0421 (19.15) 0.0068 (2.29) 0.0058 (15.36)
Oy 1.3738 (84.84) 0.8675 (36.05) 0.7512 (112.46) 2.0178 (®BB.3
oy 0.1740 (21.70) 0.5749 (23.64) 1.5864 (47.56) 0.3685 (2p.18
B 0.3062 (21.58) 0.3303 (22.88) 0.4776 (40.52) 0.0993 (1n.34
p -0.1354 (15.35) -0.2690 (53.27) -0.1804 (28.83) -0.4256 2.7{B)
1-w 0.6417 (85.54) 0.8090 (134.09) 0.4688 (13.89) 0.5657 (6B2p.
Y 2.1044 (3.56) 7.1046 (35.35) 5.9851 (17.49) 1.5347 (2.04)
Yz -0.9645 (4.20) -3.2600 (1.80) -0.1099 (0.712) -0.6733 (3.20
EF[A] 0.1355 (2.13) 0.1335 (11.59) 0.1367 (4.42) 0.0392 (1.91)
EQ[A] 0.7751 (0.42) 6.4610 (0.12) 1.0416 (0.08) 0.1302 (3.13)

32



Implied Volatlity, %
Implied Volatlity, %

40 i i i i 30 i i i i
20 30 40 50 60 70 80 20 30 40 50 60 70 80
Put Option Delta Put Option Delta
MO DUK
48
46
44}
=S K
5 = 42F
= =
S 2 40
=} =}
2 2
=3 S 38
E E
36
27 ‘:HT\I‘:S--‘_‘__‘-‘: 34}
26 i i i i i 32 i i i i i
20 30 40 50 60 70 80 20 30 40 50 60 70 80
Put Option Delta Put Option Delta
Figure 1

The average implied volatility smirk on stock options
Lines are the average implied volatility plotted againdtqution delta at three fixed maturities: one month
(solid lines), two months (dashed lines), and three morthsh-dotted lines). Each panel is for one com-

pany.
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Figure 2

Time series of CDS spreads and at-the-money stock option irtipd volatilities.

The solid lines are the time series of CDS spreads at fixedritiasuof one, three, five, seven, and ten years,
with scales on the left hand size. The dashed lines are treedaries of the at-the-money (50 delta) stock
option implied volatilities at fixed maturities of 30, 60,chf1 days, with the scales on the right hand side.
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Figure 3

Cross-correlations between weekly changes in the five-ye&@DS spread and the three-month at-the-
money implied volatility.

The bars show the cross-correlation estimates betweenlyveletnges in the five-year CDS spread and
weekly changes in the three-month at-the-money impliedtility at different leads and lags. The two
dash-dotted lines in each panel define the 95 percent conédsand.
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Figure 4

The contemporaneous response of the credit spread to unit sbks in the two risk factors

Lines denote the contemporaneous response of the cred@dspmtefined as the difference between contin-
uously compounded spot rate of a reference company and thesponding spot rate for the libor/swap
market, to unit shocks to the two sources of rigksolid lines) and/ (dashed lines).
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Figure 5

The time series of return variance rates and default arrivalrates.

Solid lines are the extracted time series of the instantagariance rate on the diffusion component of the
stock return, with the scales on the left hand side. Dasimed lare the extracted time series of the default
arrival rate on the reference companies, with the scaleberight hand side.
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Figure 6

The term structure of credit default swap spreads.

The solid lines represent the mean term structures comgnatecthe estimated model and the sample mean
levels of the two risk factors. Dashed lines are computedeliyng v; to the sample average amdto one
standard deviation away from its sample mean. Dotted lireg@mputed by setting to the sample mean

and varyingv; one standard deviation away from its sample mean.
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Figure 7

The one-month implied volatility smirks.

Moneyness is defined as(K/S)//vt. The solid lines are the mean implied volatility smirks aeenonth
maturity computed from the estimated model and the sampénrtevels of the two risk factors. Dashed
lines are computed by settingto its sample average amdto one standard deviation away from its sample
mean. Dotted lines are computed by settim¢p the sample mean ang to one standard deviation away
from its sample mean.
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Figure 8

The six-month implied volatility smirks.

Moneyness is defined as(K/S)//vt. The solid lines are the mean implied volatility smirk at enenth
maturity computed from the estimated model and the sampénrtevels of the two risk factors. Dashed
lines are computed by settingto its sample average amdto one standard deviation away from its sample
mean. Dotted lines are computed by settim¢p the sample mean ang to one standard deviation away
from its sample mean.
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Figure 9

The term structure of at-the-money implied volatilities.

The solid lines are the mean term structure of the at-theemdéorward implied volatility computed from
the estimated model and the sample mean levels of the twdatsérs. Dashed lines are computed by
settingv; to the sample average amdone standard deviation away from its sample mean. Dotted kme
computed by setting to the sample mean amdto one standard deviation away from its sample mean.
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