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Abstract

Mean-reverting portfolios, with fewer assets, but enough volatility are a real

challenge for financial investors. Although they offer an ideal investment oppor-

tunity, they are very difficult to construct with real time data. To design such

portfolios, one has to optimize their mean-reverting strength while maintaining

sparsity constraints and a volatility threshold. Most of the existing approaches

are framed as an eigenvector issue with a sparsity constraint. In this paper, we

propose two methods to design a sparse mean-reverting portfolio. The idea is to

optimize the predictability using a regularization technique that combines l1 and

l2-norms. Computer simulations are performed on market data extracted from

SP500. The obtained numerical results prove the effectiveness of the proposed

methods compared with the existing approaches.

Keywords: Mean-reversion, Sparse portfolios, VAR (1) model, convex

relaxations, lp-norm

1. Introduction

Portfolio selection is one of the most important concepts in financial data

analysis. The foundations of modern portfolio theory can be traced to Markowitz’s

early papers [1]. Accordingly, the investment returns should be maximized for

a given degree of risk. As a result, to create an optimal portfolio, one has5
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to guarantee a greater return-to-risk ratio. Additionally, in the last decade,

mean-reversion strategy has gained a considerable attention, especially for pre-

dictability measurement in portfolios management. It has been established that

mean-reverting portfolio assets oscillate around their long-term mean [2, 3].

Hence, systematic trading strategies can be developed using portfolios with rel-10

atively predictable short-term behavior. Yet, such mean-reverting portfolios,

with two or more assets, may be hard to build due to non-stationarity and

combinatorial constraints. Moreover, finding the appropriate mean-reverting

assets combination is insufficient for a portfolio to be realistic. What is more,

its long-term returns should be able to compensate for transaction costs.15

Currently, these assets are used in cointegration-based statistical arbitrage

strategies [4]. This is the classical approach to pairs trading that identifies

a stationary linear function of non-stationary time series. In [5], the authors

presented a general survey of the cointegration analysis based on the vector

autoregressive model. Their approaches use essentially statistical tests to guar-20

antee that the time series are cointegrated. Unfortunately, such tests are very

sensitive to the data’s modeling assumptions. Besides, they are marginally prof-

itable only if the capital is high, since they may incur additional costs. In other

words, cointegration is optimal while working with a pair of assets, but not

multi-asset baskets since it cannot properly handle too many of them [4].25

To deal with the cointegration considering multi-assets portfolios, several

approaches have been proposed recently. The methods proposed in [6, 7, 8] are

based on the portfolio predictability analysis to measure the portfolio mean-

reversion. The approaches of the authors in [6, 8] are based on the Box and

Tiao canonical decomposition hypothesis [9], which models the pricing process30

independently from the historical data. In addition, it has been stated that

the assets follow a vector autoregressive model under the condition that the

portfolio’s covariance matrix has to be stationary. In [7], the authors assumed

that the generated portfolio follows an Orstein-Uhlenbeck process, which was

then used to establish the link between the mean-reversion parameter and the35

predictability statistic.
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In [6], the authors used the predictability ratio and defined a mean-reverting

portfolio (MRP) to be the one with a low predictability, as opposed to a mo-

mentum portfolio, which has a high predictability. They modeled the MRP

formulation as an optimization problem with constraints, and compared it to40

some alternative approaches such as portmanteau minimization test and cross-

ing minimization statistic. They highlighted the need of a sparse MRP and

recommended the addition of a minimum variance constraint to identify an op-

timal portfolio. In fact, the optimization problem is reformulated as a general-

ized eigenvalue problem with a sparsity constraint leading to NP-Hard problem.45

Therefore, several solutions were proposed using semi-definite relaxations. In

[10, 11], the convex relaxation was altered to take into consideration additional

constraints on the investment budget and leverage. Mousavi et al. [12] proposed

an improved greedy approach by making it a two-steps process and adding a

penalty decomposition algorithm. Despite the diversified strategies, their results50

have proven to be computationally expensive, and not scalable.

Taking into account the aforementioned limitations, in this paper, we pro-

pose a novel approach to sparse mean-reverting portfolio (SMRP) selection.

Inspired by the method suggested in [6], our idea is to optimize the portfo-

lio predictability while enforcing its sparsity using a combination of the l1-norm55

and l2-norm. We suggest two optimization methods to select the optimal SMRP.

The first method is to assign a regularizing parameter to the l1-norm and an-

other one to the l2-norm, assuming that their sum equals one. In the second

method, we set two regularizing parameters that are different from each other.

When applying these approaches, each one results in an optimized portfolio and60

regularizing parameters.

The rest of this paper is structured as follows. Section 2 introduces mean-

reverting portfolios and their sparse optimization. Section 3 details the existing

generalized algorithms to deal with optimal portfolios selection. Section 4 is

concerned with the proposed. Section 5 gives a list of the metrics used to65

measure the model’s performance. Section 6 presents the numerical results and

their analysis. Finally, the paper is concluded in section 7.

3

Electronic copy available at: https://ssrn.com/abstract=4081793



2. Mean-Reverting Portfolios

In finance, investors make investments with the expectation of increasing

financial returns. This is achieved by either buying or selling the assets before a70

fall in their prices occurs. The asset price, on the other hand, might be difficult

to anticipate in many circumstances. In fact, for most people, the choice of the

best moment to invest in an item is challenging [10].

Rather than investing in a single asset, people in statistical arbitrage strategy

invest simultaneously in different assets assembled in a portfolio. Because such a75

portfolio and its volatility remain fixed, it is simple to select the optimum timing

to invest. In practice, this volatility can be naturally stationary, manufactured

using technical or fundamental analysis, or built using statistical models. As

an example, a portfolio volatility made up of two security assets, denoted by y1

and y2 respectively is presented in figure 1.80
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Figure 1: An example of the log-prices of two assets and their modeled spread.

Note that the log-price of a financial asset is expressed as,

yt = logpt (1)

where pt denotes the price of a financial asset at time t.

The focus of this work is to construct an improved mean-reverting portfolio

by combining these spreads. Let si,t, where i ∈ {1, . . . , n}, t ∈ {1, . . . ,m}, be

the price of the ith asset in the portfolio at time t, and xi is its associated weight.85

Then, the portfolio value, at time t, is given by,
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pt = xi ∗ si,t (2)

It is assumed that the portfolio values follow an Ornstein-Uhlenbeck process,

which is expressed as,

dp(t) = λ(µ− p(t))dt+ σw(t) (3)

where w(t) is a standard Brownian movement, λ denotes the mean-reversion

coefficient, µ is the long-term mean, and σ represents the portfolio volatility.90

This model offers a straight representation of mean-reversion speed and could

be used as a benchmark for mean-reversion time series. However, there is no

obvious connection to the portfolio weights, which are crucial for portfolio opti-

mization. To link this process to the portfolio weights, we use the predictability

variable.95

Let us assume that the asset prices follow a first order vector autoregressive

VAR(1) process. We also take into consideration that the portfolio’s estimated

prices at timet are generated using past data of the prices up to time t−1, which

are affected by an additive white Gaussian noise (AWGN). Then, the estimated

vector of prices at time t is expressed as,100

st = Ast−1 +wt (4)

where sTt = (s1,t, s2,t, . . . , sn,t) is the vector of prices, A is an n ∗ n matrix

and wt ∼ N(0, σI). By multiplying both sides, in (4), by xT = (x1, . . . , xn)

whose ith element represents the amount invested in the ith asset, we get,

xTst = xTst−1A+ xTwt (5)

Note that the negative values of xTst correspond to the case of short-selling

[13].105

The predictability is defined to be the statistic ratio that measures how a

random process is close to the white noise. Let σ̂2 = Var (x̂t+1) denotes the
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variance of estimated weight vector at time t+1, and let σ2 = Var (xt) represents

the variance of the past weight vector. Then, the predictability can be expressed

as [9],110

v =
Var (x̂t+1)

Var (xt)
=

σ̂2

σ2
(6)

When v is high, σ̂2 dominates the noise, thus the process can be predicted.

In the other hand, if v is low, the process prediction is difficult since it looks

like a Gaussian noise. In other words, as long as predictability is low, the

mean-reverting speed of the portfolio will be higher.

The predictability can be rewritten in terms of the covariance matrix of the115

asset prices, Γ, as follows [6],

v =
xTAATx

xTΓx
(7)

Under the assumption that each asset price has zero mean so as to be nor-

malized, the optimization problem becomes a minimization of the predictability.

This is equivalent to solving the generalized eigenvalue problem, which is ex-

pressed as,120

det
(
AΓAT − λΓ

)
= 0 (8)

Other mean-reversion proxies. Instead of using predictability, mean-reversion

can be modeled using other statistics such as Portmanteau and crossing statis-

tics. Portmanteau statistic measures how much a process approaches a white

noise. This statistic metric is given by [14]:

Φ̂p =
1

p

p∑
i=1

(
xTΓix

xTΓx

)2

(9)

where ΓI is the lag-I autocovariance of the asset prices. This statistic pro-125

motes stronger mean-reversion in the portfolio if it is sufficiently low. The

Crossing statistic evaluates the expected number of crosses around zero per

unit of time of a univariate process y(n = 1) [15]. It is written as,

6
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γ(y) = E

[∑t
i=2 1{yiyi−1≤0}

t− 1

]
(10)

As stated by the cosine formula, if yi is an autoregressive process of order

one AR(1), |a| < 1, ϵi is i.i.d standard Gaussian noise and yi = ayi−1 + ϵi then,130

γ(y) =
arc cos(a)

π
(11)

It is worth noting that the crossing statistic is only valid for stationary AR(1)

process with n = 1 where the minimization of the first order autocorrelation can

maximize the crossing rate of the process x [16]. In the case n > 1, we minimize

the first order autocorrelation and maintain all the absolute autocorrelations

small.135

3. Sparse Mean-Reverting Portfolio Selection

In the previous section, we discussed how to handle a generalized eigenvalue

problem and identify a portfolio that optimizes the predictability. However, our

aim is to find the best portfolio vector with a strong mean-reversion under a

sparseness condition. Accordingly, our optimization problem can be written as140

follows,

minimize
xTAΓATx

xTΓx
s.t. ∥x∥0 = k (12)

Where k is the sparsity rate. By adding a sparsity constraint to the gen-

eralized eigenvalue optimization, it becomes an NP-hard problem that is very

difficult to solve in reality. Since an optimal solution is not available, we search

for an approximate sub-optimal solution. There are three known classes of al-145

gorithms to solve this problem, namely LASSO, greedy algorithms and convex

relaxations [6, 7].

Clustering via LASSO keeps the asset universe small, therefore easier to

manage. Even the initial minimization problem is manageable. This method

exploits the conditional dependance between asset prices in order to identify150
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small asset clusters via LASSO. The application of greedy algorithms to the

optimization process is equivalent to constructing a sparse solution from scratch.

According to the numerical results presented in [7], this approach is the fastest in

its computation and yields the best theoretical result in more than 50 percent

of the cases in comparison to other algorithms applied to the same data set.155

Regarding convex optimization, it is appropriate to relax the l0-norm to anl1-

norm constraint. It makes the problem more complex but also gives much

needed leeway in the control of the portfolio’s volatility.

3.1. Clustering via LASSO

LASSO clustering is a sparsifying method for the predictability minimiza-160

tion problem. It ensures the dimension reduction of the investing universe by

considering only the combinations found in the clusters for building the portfolio

[17]. Figure 2 presents the bloc diagram of LASSO clustering
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Figure 2: Steps of clustering asset via LASSO.

The LASSO is applied to both covariance selection and VAR model estima-

tion to get the sparse estimates. Their intersection provides the asset clusters165

containing the assets to invest in.

3.1.1. Covariance estimate

In this bloc, the inverse covariance matrix is estimated using LASSO based

on l1-norm and penalized maximum likelihood. This estimation is a maximiza-

tion problem, which is formulated as,170
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max
x

log detx− Tr(Σx)− α∥x∥1 (13)

where α is a parameter that represents the number of zeros in the final sparse

estimation. The larger α is, the sparser the estimation of the covariance will be.

3.1.2. Structured VAR estimate

Recall that the evolution of the asset prices follows a VAR(1) model, given

in (4). The least square estimate of A is given by the following minimization175

problem:

argmin
A

∥st − st−1A∥2 (14)

This optimization problem can be made sparse by adding an l1-norm penalty.

The strength of LASSO is its ability to modify the final structure of the sparse

estimate of A by appending alternative forms ofl1-norm. We may use a column-

wise univariate LASSO to maximize the following objective function for every180

asset a:

argmin
a

∥sit − st−1a∥2 + λ∥a∥1

for every i ∈ {1, . . . , n}
(15)

A multi-task LASSO can be also applied to get the sparse estimate of A by

setting its entire columns to zero:

argmin
A

∥st − st−1A∥2 + λ
∑
i

√∑
j

a2ij (16)

where aij is an element of the matrix A.

3.1.3. Intersected clusters185

Once the sparse estimates of the covariance matrix and the VAR coefficient

are generated, the objective will be grouping the two clusters into one sub-

set of data existing in them both. The mean-reverting portfolio selection can,

afterwards, be made using components from the subset of the found data [18].

9
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3.2. Greedy Algorithms190

Greedy algorithms are used for their fast implementation of portfolio opti-

mization [6]. The key idea is to build the portfolio recursively based on the

previous local optimal solution. Let Ik = {i ∈ [1, n] | xi ̸= 0} be the set of in-

dices belonging to the k non-zero components of x. When k = 1, we set I1

as195

I1 = arg min
i∈[1,n]

(
ATΓA

)
ii

Γii
(17)

Once we have the first term, the recursion goes through the rest of the k

indices. For every i not in Ik, the minimization problem is equivalent to finding

the vector corresponding to the smallest eigenvalue of the matrix E given by,

E = Γ−1/2
(
ATΓA

)T

Γ
(
ATΓA

)
Γ−1/2 (18)

The index i of the smallest expected eigenvalue is then added to Ik. The

iteration is repeated until the cardinality constraint is satisfied, i.e. (i = k).

Although this method is somewhat faster to implement, its main disadvantage

is that many asset combinations are missed through the recursive portfolio con-

struction. Therefore, the final result may not be the most optimal [19].200

3.3. Convex Relaxations

The standard minimization techniques cannot be directly applied to mean-

reverting portfolio optimization problem since it is non-convex and contains a

cardinality condition. This issue has been addressed in [8] using semi-definite

programming. They have first transformed the problem into a convex semi-205

definite optimization program (SDP), and then solved it using a minimum eigen-

value solver. To do this, the l0-norm was relaxed to an l1-norm constraint. By

introducing the matrix X = xxT , the portfolio selection problem is rewritten

as:

10
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min
Tr

(
AΓATX

)
Tr(ΓX)

s · t.∥X∥1 ≤ k

Tr(X) = 1

| X ≥ 0

(19)

The l1-norm is the sum of the absolute values of all elements in the matrix210

X. Tr(X) = 1 is added as an extra constraint to help with numerical stability.

It is equivalent to normalizing the weight vector to a unit vector. Nonetheless,

the minimization function is a ratio of two matrix traces, which makes it quasi-

convex and not solvable by convex optimization methods. To cope with this

problem, the l1-norm can be added as a regularization instead of a constraint.215

The optimization problem is then given as,

minTr
(
AΓATX

)
+ ρ∥X∥1

s.t. Tr(ΓX) ≥ σ2

Tr(X) = 1

X ≥ 0

(20)

In this version, the numerator of the ratio in (19) is minimized while the

denominator is kept over a threshold. Sparsity is induced by the addition of

the l1-norm penalty. Knowing that Tr(ΓX) expresses the volatility of the port-

folio, this optimization problem guarantees the minimization of the portfolio220

predictability with a sufficient volatility. Another advantage of this form is the

flexibility and interpretability regarding the constraints gained [16]. The car-

dinality constraint is applied at various stages of the algorithm to produce the

closest approximation to the optimal solution of this non-convex problem. Un-

fortunately, all of these algorithms barely estimate the optimal weight vector225

and are computationally intensive. Moreover, in some rare instances, only the

convex relaxation method may exhibit optimum convergence [20]. Hereafter,

we provide two new formulations of the MRP optimization problem as well as

11
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a process for computing the weight vector that gives satisfactory results.

4. New formulations of the MRP with a l1-norm and l2-norm combi-230

nation

4.1. l1-norm and l2-norm description

To solve the MRP optimization problem, we propose to combine an l1-norm

and l2-norm added to the convex relaxation algorithm. These measurements are

known to enforce sparsity, which is the main objective of this work. Generally,235

an lp norm is expressed as,

lp : ∥x∥lp = p

√∑
i

|x|p (21)

Note that the l1-norm is the mostly used in solving sparsity problems since

it offers the sparsest solution, but we can’t neglect the l2-norm because it also

offers a sparse option to choose from. To clearly explain the process for solving

different norms, we assume that the optimization problem is two-dimensional240

and use the graphics in figure 3 to expose the solutions for the l0-norm, l1-norm

and l2-norm minimizations. Let S represent all possible solutions x∗ given by,

S = {x∗ : y = Φx} (22)

where y is a measurement vector, x is the acquired data vector and Φ is the

measurement matrix.

12
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Figure 3: l0, l1 and l2 norm solutions representation.

The equation system (22) is expressed by a blue line in a two-dimensional245

space in figure 3. Each norm solutions results in a different type of graph;

however, the sparsest solutions are the intersection points of the line S and the

graphs l0, l1 and l2. The fact that the sparsest solutions are those localized

on the coordinate axis, shows the advantage of choosing between the l0-norm,

l1-norm even the l2-norm produces a sparse solution. Unfortunately, the l0-250

norm is non-computable so the l1-norm is the mostly used in sparsity inducing

algorithms [21].

4.2. MRP reformulated with one regularizing parameter

Our MRP reformulation will be based on the model developed in [6]. It

rewrites the portfolio selection problem into a manageable algorithm by applying255

convex relaxations as shown in equation (16). We extend this model to add the

l2-norm as a regularization instead of a constraint in addition to the l1-norm.

the regularization with one parameter is given by,

minTr
(
AΓATX

)
+ µ∥X∥1 + (1− µ)∥X∥2

s.t. Tr(ΓX) ≥ σ2

Tr(X) = 1

X ≥ 0

(23)
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This becomes a minimization problem with both l1-norm and l2-norm as regu-

larizations and a minimum variance constraint. To solve it, we use the historical260

data to estimate the price process knowing that it is a VAR(1) model. Once

we have the estimates, we can extract the autoregressive covariance A and the

estimated covariance matrix Γ. These two matrices are the main inputs for

the proposed algorithms. The following algorithm in table1 is used to solve the

minimization problem,265

Table 1: Algorithm 1 for solving the reformulated MRP with one regularizing parameter.

Solve (23)

Input A, Γ

Parameter µ

Set X0 to the equal weighted portfolio, introduce the constraints

For µ from 0 to 1 increment of 0.01

Solve the quadratic problem (23) to find the local minimum Xopt

If Xopt is sparser than X0

Update X0 = Xopt

End if

End for

4.3. MRP reformulated with two regularizing parameters

Our second MRP design differs from the first in that it combines l1-norm

and l2-norm using two regularizing parameters. The optimization problem is

then reformulated as,270

minTr
(
AΓATX

)
+ θ1|X∥1 + θ2∥X∥2

s.t. Tr(ΓX) ≥ σ2

Tr(X) = 1

X ≥ 0

(24)
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where θ1 and θ2 are the regularizing parameters. It is worth mentionning

that the use of two regularizing parameters increases the optimization computa-

tional complexity compared to the case of one regularizing parameter. To find

the optimum weight’s vector, we use the following algorithm in table2:

275

Table 2: Algorithm 2 for solving the reformulated MRP with two regularizing parameters.

Solve (24)

Input A, Γ

Parameters θ1 and θ2

Set X0 to the equal weighted portfolio, introduce the constraints

For θ1 from 0 to 1 increment of 0.01

For θ2 from 0 to 1 increment of 0.01

Solve the quadratic problem (24) to find the local minimum Xopt

If Xopt is sparser than X0

Update X0 = Xopt

End if

End for

End for

5. Performance Metrics

In order to measure the performance of the proposed algorithms, we use

the three common metrics namely cumulative profit and loss (PL), return on

investment (ROI) and sharp ratio (SR) [12].

5.1. Cumulative Profit and Loss280

This metric is defined as the cumulative return of a mean-reverting portfolio

(MRP) in one trading period from t1 to t2. We first define the profit and loss

of an MRP as follows,
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PLt ≜ xT
p ∗ rt (25)

Let rt be the asset’s returns given by,

rt = yt − yt−1 = log pt − log pt−1 (26)

where pt are the prices and xp is the weights vector. The profit and loss (in285

dollars) of an investment in a portfolio for a single holding cycle is evaluated

by the PL. if we want to determine the cumulative return performance, the

cumulative PL can be defined as,

Cum. PL (t1, t2) ≜
t2∑
t1

P&Lt (27)

To further explain, the PLt depends on whether we are holding a long or

short position regarding the mean price. If it is a long position, opened at time290

ta and closed at time tb, the PL at time t ∈ [ta, tb] is:

PLt = xT
p ∗ rt ∗ (t− ta)− xT

p ∗ rt−1 ∗ (t− 1− ta) (28)

If it is a short position instead, we have

PLt = xT
p ∗ rt−1 ∗ (t− 1− ta)− xT

p ∗ rt ∗ (t− ta) (29)

5.2. Return On Investment

Return on investment is another portfolio return metric that we implement.

At time t, the ROI is the single-period PL normalized by the gross investment295

made, which is ∥xp∥1. It is written as:

ROIt =
PLt

∥xp∥1
(30)

16
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5.3. Sharpe Ratio

The Sharpe ratio as introduced in [22], can be used for measuring risk-

adjusted return. It determines the amount of additional profit that can be

gained in exchange for additional volatility. The SR of ROI for trading time300

from t1 to t2 is defined as follows:

SRROI (t1, t2) =
√
252 ∗ µROI

σROI
(31)

where

µROI = 1/ (t2 − t1)

t2∑
t1

ROIt (32)

and

σROI =

[
1/ (t2 − t1)

t2∑
t1

(ROIt − µROI)
2

] 1
2

(33)

6. Numerical results

In this section, we evaluate the effectiveness of the two proposed methods for305

selecting mean-reverting portfolios with sufficient volatility and minimal sparsity

from a universe of tradable assets. In order to analyze its performance, we

applied a trading strategy designed specifically for mean-reverting processes.

The numerical simulations on real market data are carried on 49 selected

stocks picked from the U.S stock market. The best representative of this stock310

market is the Standard and Poor’s 500 Index (SP500) from which we selected

the best 49 stocks in terms of weight factor in the index. The daily prices

of the selection are retrieved from yahoo finance for the trading period from

January 2, 2014 to December 28, 2018. The benchmark used for comparison is

the equal weighted portfolio of these 49 assets, where each asset i ∈ {1, . . . , 49}315

has the same weight wi = 1/49. In figure 4, we represent its performance during

the trading period. In the short term (30 to 90 days), the prices’ evolution is

sufficently mean-reverting to make profits.
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Figure 4: Equal weighted portfolio’s performance during the trading time period.

To compare the models presented in section 4, we generate st the prices

process. It is a VAR(1) model estimated by using the daily log-prices of the320

49 selected stocks. We can then extract the autoregressive covariance matrix

A and the estimated covariance matrix Γ. These two matrices, whose size

is 49 ∗ 49, are then used to compute the studied algorithms. The minimum

variance is determined based on the idea given in [8], such that it should be

greater than one fifth of the median variance of all assets in the pool. In figure325

5, the estimated VAR(1) prices were simulated as an equal weighted portfolio.

We can already see an improvement in the case of the portfolio’s mean-reversion

compared to the benshmark.
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Figure 5: Estimated VAR(1) prices’ simulation during the trading time period.

6.1. Designed Models Comparison

We test our models in this part by using the daily closing prices of the330

retrieved data. The equal weighted portfolio (MRP-eqw) was generated to be

a benchmark for its advantages. Three MRP designs are applied, consisting

first, of the model of minimizing predictability (MRP-pre) presented in [6], the

proposed MRP design with one regularizing parameter (MRP-des1) and the

second MRP design with two regularizing parameters (MRP-des2). Figure 6335

shows the prices evolution after the estimation process. The portfolio’s value

increases in the case of MRP-des1 with time, while MRP-pre and MRP-des2

have a close evolution.
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Figure 6: Prices evolution for MRP-pre, MRP-des1 and MRP-des2 after estimation during

the trading time period.

In figure 7 and table 3, the performance of our developed MRPs are compared

to MRP-pre model. Out-of-sample results such as ROIs, Sharpe ratios of ROIs,340

CPU time and cumulative PLs are presented. We can see clearly that the first

designed MRP model (MRP-des1) can get a stronger Sharpe Ratio with a low

CPU time. Moreover, its final cumulative returns is relatively high compared

to the others. However, even if the average ROI of MRP-des1 is the highest, it

is still low for gaining fast and easy profits from the portfolio. Conclusively, all345

the performance metrics show that the adventage of the designed model with

one parametrizing parameter is better exposed when the investment’s value is

high and its period is long.
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Table 3: CPU time (in seconds), Sharpe Ratio and average ROI for MRP-pre, MRP-des1 and

MRP-des2 during the trading time period.

Model CPU time (in seconds) Sharpe ratio AverageROI

MRP-pre 196.5918 3.4147 2.8%

MRP-des1 307.5506 3.5031 3.7%

MRP-des2 4290.6465 2.9249 3.0%
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Figure 7: Estimated ROIs and cumulative PLs for MRP-pre, MRP-des1 and MRP-des2 during

the trading time period.
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We also compare our MRP-des1 and MRP-eqw models’ performance. Figure

8 shows that our proposed MRP model with one regularizing parameter per-350

forms better than the benchmark method with better Sharpe Ratio and greater

final cumulative returns.

Table 4: Sharpe Ratio and average ROI for MRP-eqw and MRP-des1 during the trading time

period.

Model Sharpe ratio AverageROI

MRP-eqw 3.2683 3.1%

MRP-des1 3.5031 3.7%
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Figure 8: Estimated ROIs and cumulative PLs for MRP-eqw and MRP-des1 during the trading

time period.
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7. Conclusion

In this paper, we proposed two new methods for constructing optimal sparse

mean-reverting portfolios. Our approaches aim to extract a sparse subset of355

assets from a larger pool of time series so it can be computed as a mean-reverting

linear combination. For this, they combine l1 and l2 norms with one or two

regularization parameters. Additionally, the proposed designs deal with optimal

portfolios selection even with more than two assets. Numerical results show that

the proposed methods provide better performance in terms of several metrics.360

It is also noticed that the use of one regularizing parameter improves mean-

reverting trading strategies.
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